
Unit -1

Introduction to Java: Introduction to Object Oriented Paradigm, Concepts of OOP,

Applications of OOP, History of Java, Java Features, JVM, Program Structure. Variables, Primitive

Data Types, Constants, Java String Class, Expressions, Primitive type conversion and Casting,

Control Structures.

Object Oriented Paradigm :

Introduction to Object Oriented Programming:

Object Oriented programming (OOP) is a programming paradigm that relies on the concept of classes

and objects. Objects collaborate by sending messages to each other. An object is an entity that

possess both state (called properties/attributes, in program defined as variables) and behaviour (the

functionalities, in program defined as functions)

Principles of Object-Oriented Programming

 Class

 Object

 Abstraction

 Encapsulation

 Inheritance

 Polymorphism

Class:

A class is a logical entity. It is blueprint from which individual objects are created. It

represents the set of properties or methods that are common to all objects of one type.

Object:

Objects are the key for Object Oriented Programming. An Object is called the instance for a

class (instantiation /initialization / memory allocation for a class) An Object possess two

characteristics

State (Properties)

Behaviour (functions)

An Object stores its state in fields (Variables) and exposes its behaviour through methods.

Methods operate for functionalities which uses the state of object internally and serves as primary

mechanism for object to object communication.

Example for Class and Object

Let’s take familiar entities Student and Teacher

First identify what are the properties and behaviour of these entities Student entity

State / properties include

Roll Number (String)

Name (String)

Year

Age (integer)

Marks (integer)

Branch (String)

Result (String) Behaviour / methods include

listenClasses()

onlineExam()

playGames()

let’s take a function writeExam

onlineExam()

{

// Use the properties, year and branch to retrieve respective online bits from data base

// allow the student to select their answers

// generate the result and update student’s property marks.

}

From the above function we can clearly observe that methods perform some actions using any

properties if needed (like year and branch) and updates and property if needed (like marks).

Abstraction:

Abstraction is the process of hiding complexity (internal implementation) and showing

essential information. For example, if you want to drive a car, you don’t need to know about its

internal workings. The same is true of Java classes. You can hide internal implementation details by

using abstract classes or interfaces. On the abstract level, you only need to define the method

signatures (name and parameter list) and let other classes implement these interfaces in their own way.

Encapsulation:

Binding the state and behaviour together into a single unit is known as encapsulation. In

encapsulation, the variables / data of a class is hidden from any other class and can be accessed only

through any member function of own class in which they are declared.

For example, if we write a single C program for defining state and behaviour of different entities

(say student and teacher) it will be like

main ()

{

// following represent entity student properties

char [30] Rollnum;

char [30] name; int marks;

// following represent entity teacher properties char [30] name;

int empId;

char [20] PFnum;

}

// functions for entity student include listenClasses()

{

…. // implementation

}

writeExams()

{

… // implementation

}

// functionalities for entity teacher, include examEvaluation()

{

….. // implementation

}

postAttendence()

{

…. // implementation

}

In this approach maintaining, all entities state and behaviour together, programmer may

willingly or unwillingly can access one entity variables under another entity functionalities.

With the help of classes we can eliminate such scenarios and bind properties and its related

functions into single unit class also known as Encapsulation

class Student

{

// following represent entity student properties char [30] Rollnum;

char [30] name; int marks;

// functions for entity student include listenClasses()

{

…. // implementation

}

writeExams()

{

… // implementation

}

} // end of class Student.

Class Teacher

{

// following represent entity teacher properties char [30] name;

int empId;

char [20] PFnum;

}

// functions for entity student include listenClasses()

{

…. // implementation

}

writeExams()

{

… // implementation

}

// functionalities for entity teacher, include examEvaluation()

{

….. // implementation

}

postAttendence()

{

…. // implementation

}

} //end of class Teacher.

Applications of Object Oriented Programming User interface design such as windows, menu. Real

Time Systems

Simulation and Modeling Object oriented databases AI and Expert System

Neural Networks and parallel programming

 Decision support and office automation systems etc.

History of Java:

Java is invented by James Gosling, Patrick Naughton, Chris Warth, Ed Frank, and Mike

Sheridan at Sun Microsystems. in 1991. Most of the Java characteristics are inherited from C and

C++ language. It was first named as Greentalk later called as “Oak” and was finally named as “Java”

in 1995.

Other languages have the problem that they are designed to compile the code for a specific

platform. To overcome this, Gosling and others started working on a portable and platform-

independent language, this leads to the creation of Java.

Java had an extreme effect on the Internet by the innovation of a new type of networked program

called the Applet. An applet is a Java program that is designed to be transmitted over the internet

and executed by the web browser that is Java-compatible. Applets are the small program that is used

to display data provided by the server, handle user input, provide a simple functions.

JDK :

JDK is a software development environment used for making applets and Java applications.

The full form of JDK is Java Development Kit. Java developers can use it on Windows, macOS,

Solaris, and Linux. JDK helps to code and run Java programs.

JRE :

JRE is a software which is designed to provide runtime environment for java applications.

It contains the class libraries, loader class, and JVM. In simple terms, if you want to run Java

program you need JRE. If you are not a programmer, you don't need to install JDK, but just JRE to

run Java programs. As all JDK versions comes bundled with Java Runtime Environment, so you do

not need to download and install the JRE separately in your PC. The full form of JRE is Java

Runtime Environment.

Evaluation of Java Versions

Java SE Version

Version Number

Release Date

JDK 1.0

1.0

January 1996

JDK 1.1

1.1

February 1997

J2SE 1.2

1.2

December 1998

J2SE 1.3

1.3

May 2000

J2SE 1.4

1.4

February 2002

J2SE 5.0

1.5

September 2004

Java SE 6

1.6

December 2006

Java SE 7

1.7

July 2011

Java SE 8

1.8

March 2014

Java SE 9

9

September, 21st 2017

Java SE 10

10

March, 20th 2018

Java SE 11

11

September, 25th 2018

Java SE 12

12

March, 19th 2019

Java SE 13

13

September, 17th 2019

Java SE 14

14

March, 17th 2020

Java SE 15

15

September, 15th 2020

Java SE 16

16

March, 16th 2021

Java SE 17

17

Expected on Sept. 2021

Among these versions only Java 8 and Java 11 have LTS (Long Term Service). Java 8 is the

default and recommended version to download

what is LTS ?

A Java LTS (long-term support) release is a version of Java that will remain the industry

standard for several years. Java 8 which was released in 2014, will continue to receive updates until

2020, and extended support will end by 2025. This gives plenty of OS vendors like Microsoft and

Red Hat the time to repackage their releases with Java 8, time for application developers to update

their applications to take full advantage of Java 8 features. At this time, the only other Java version

that have LTS service is Java 11

Java Features

1) Simple:

The Java programming language is easy to learn. Java is similar to C/C++ but it removes the

drawbacks and complexities of C/C++ like pointers and multiple inheritances. So one having

knowledge on these languages will find Java familiar and easy to learn.

Object-Oriented programming language:

Java is a object-oriented programming language. It has all OOP features such as

 Object

 Class

 Inheritance

 Polymorphism

 Abstraction

 Encapsulation

Robust:

Java uses strong memory management techniques so that there is no improper memory

assignment during the running of a program. The unreferenced objects still being in the memory led

to the wastage of space. Java’s garbage collector solves the problem it will delete the objects which

are not used or not referenced anymore by the program.

Secure:

The Java platform is designed with security features built into the language, You never hear

about viruses attacking Java applications. Memory access via pointer and performing pointer

arithmetic is unsafe, so Java has no support for pointers to provide more security.

High Performance:

Java is an interpreted language, so it cannot be as fast as a compiled language like C or C++.

But, Java achieves high performance with the use of just-in-time compiler.

Java is Multithreaded:

With this feature, Java supports “Multitasking”. Multitasking is when multiple jobs are

executed simultaneously. Multitasking improves CPU and Main Memory Utilization.

Distributed

In the era of Internet, applications need to run in distributed environment. This is possible in

java applications since the programmer can use the TCP/IP protocols in the code. Java offers

Remote Method Invocation (RMI) package to implement such interfaces in a multi-user application.

Java is Platform Independence:

Unlike other programming languages such as C, C++ etc which are compiled into platform

specific machines. Java follows write-once, run-anywhere principle.

On compilation Java program is compiled into bytecode.

This bytecode is platform independent and can be run on any machine.

JVM (Java Virtual Machine)

JVM (Java Virtual Machine) is a specification that provides runtime environment in which java bytecode can be

executed. JVMs are platform dependent. The JVM will be provided separately for different machine languages(OS)

functionalities performed by the JVM

1. Loads code

2. Verifies code

3. Executes code

4. Provides runtime environment

JVM Architecture

Let's understand the internal architecture of JVM. It contains classloader, memory area, execution engine etc.

Classloader

Classloader is a subsystem of JVM which is used to load class files. Whenever we run the java program, it is loaded

first by the classloader. There are three built-in classloaders in Java.

Bootstrap ClassLoader: This is the first classloader which is the super class of Extension classloader. It loads the rt.jar

file which contains all class files of Java Standard Edition like java.lang package classes, java.net package classes, java.util

package classes, java.io package classes, java.sql package classes etc.

Extension ClassLoader: This is the child classloader of Bootstrap and parent classloader of System classloader. It loades

the jar files located inside $JAVA_HOME/jre/lib/ext directory.

System/Application ClassLoader: This is the child classloader of Extension classloader. It loads the classfiles from

classpath. By default, classpath is set to current directory. It is also known as Application classloader.

Class(Method) Area

Class(Method) Area stores per-class structures such as the runtime constant pool, field and method

data, the code for methods.

Heap

It is the runtime data area in which objects are allocated.

Stack

Java Stack stores frames. It holds local variables and partial results.

Each thread has a private JVM stack, created at the same time as thread.

A new frame is created each time a method is invoked. A frame is destroyed when its method invocation

completes.

Program Counter Register

PC (program counter) register contains the address of the Java virtual machine instruction currently being

executed.

Native Method Stack

It contains all the native methods used in the application.

Execution Engine

The execution engine is the Central Component of the java virtual machine(JVM). It communicates with

various memory areas of the JVM. Each thread of a running application is a distinct instance of the virtual machine’s execution

engine. Execution engine executes the byte code which is assigned to the run time data areas in JVM via class loader. Java

Class files are executed by the execution engine.

https://www.geeksforgeeks.org/jvm-works-jvm-architecture/

Execution Engine contains three main components for executing Java Classes. They are:

Interpreter: It reads the byte code and interprets(convert) into the machine code(native code) and executes them

in a sequential manner.

Just-In-Time(JIT) compiler: It is used to improve the performance. JIT compiles parts of the byte code that have

similar functionality at the same time, and hence reduces the amount of time needed for compilation. Here, the term

"compiler" refers to a translator from the instruction set of a Java virtual machine (JVM) to the instruction set of a specific

CPU.

Profiler: This is a tool which is the part of JIT Compiler is responsible to monitor the java bytecode constructs and

operations at the JVM level.

Garbage Collector: This is a program in java that manages the memory automatically. It is a daemon thread which

always runs in the background. This basically frees up the heap memory by destroying unreachable methods.

Java Native Interface

Java Native Interface (JNI) is a framework which provides an interface to communicate with another application written in

another language like C, C++, Assembly etc. Java uses JNI framework to send output to the Console or interact with OS

libraries.

Data Types

Data types represent the different values to be stored in the variable. In java, there are two types of

data types:

1) Primitive data types

2) Non-primitive data type

https://www.geeksforgeeks.org/compiler-vs-interpreter-2/
https://www.geeksforgeeks.org/garbage-collection-java/
https://www.geeksforgeeks.org/daemon-thread-java/

Note: char default value ‘\u0000’ indicates nul

Variables and Data Types in Java

Variable is a reference for memory location. There are three types of variables in java - local,

instance and static.

Types of Variable :

There are three types of variables in java: o local variable

1) instance variable

2) static variable

3) Local Variable

A variable which is declared inside the method is called local variable. The scope and lifetime

are limited to the method itself. the arguments of a function will also be treated as local variables to

that method

void m(int a, int b)

{

int sum = a+b // here a,b and c all three are local variables to function/method – m

}

Instance Variable

A variable which is declared inside the class but outside the method, is called instance variable. It is

not declared as static. They are known as instance variables because every instance of the class

(object) contains a copy of these variables. The lifetime of these variables is the same as the lifetime

of the object to which it belongs. Object once created do not exist for ever. They are destroyed by

the garbage collector of Java when there are no more reference to that object.

Static variable

A variable that is declared as static is called static variable. It cannot be local variable. It is a

variable which belongs to the class and not to object(instance). These variables will be initialized

first, before the initialization of any instance variables.

A single copy to be shared by all instances of the class

A static variable can be accessed directly by the class name and doesn’t need any object

Example to understand the types of variables in java class A

{

int data=50; //instance variable static int m=100; //static variable void method()

{

int n=90; //local variable

}

} //end of class A

Constants in Java

A constant is a variable which cannot have its value changed after declaration. It uses the 'final'

keyword.

Syntax

final dataType variableName = value; final int a =10;

static final dataType variableName = value; static final int b = 40;

Operators in java

Operator in java is a symbol that is used to perform operation over the operands. For

example: +, -, *, / etc.

There are many types of operators in java which are given below: o Unary Operator,

1. Arithmetic Operator,

2. shift Operator,

3. Relational Operator,

4. Bitwise Operator,

5. Logical Operator,

6. Ternary Operator and

7. Assignment Operator

Expressions

Expressions are essential building blocks of any Java program, usually created to produce a

new value, although sometimes an expression simply assigns a value to a variable.

Expressions can be built using values, variables, operators and method calls.

Types of Expressions -

While an expression frequently produces a result, it doesn't always. An expression can be Those that

produce a value, i.e. the result of (1 + 1)

Those that assign a variable, for example (v = 10)

Java Type casting and Type conversion

Implicit type casting/Automatic Type Conversion -

Also known as widening conversion takes place when two data types can be automatically converted

without any loss of data. This happens

when:

The two data types are compatible.

When we assign value of a smaller data type to a bigger data type.

For Example,

In java the numeric data types are compatible with each other but no automatic

conversion is supported from numeric type to char (or) 15boolean. Also, char and 15boolean are not

compatible with each other.

type conversion/Implicit type casting example int a; short b = 50;

a = b; // conversion from b to a, smaller type to larger

Narrowing or Explicit Conversion -

If we want to assign a value of larger data type to a smaller data type we perform explicit

type casting or narrowing. This is useful for incompatible data types where automatic conversion

cannot be done.Here, target-type specifies the desired type to convert the specified value to.

example,

 int a = 10;

 byte b;

 b = (byte) a; //we are explicitly mentioning to convert a of type int to byte and then assign

to b

Control Flow Statements

The control flow statements let you control the flow of the execution in your program. Java

programming language, supports decision making, branching, looping, and adding conditional

blocks.

The control flow statements can be categorized into

1) Decision Making Statements

2) Looping Statements

3) Branching Statements

Decision Making Statements

decision-making statements are used when we have to change the flow of execution based on

a condition

There are three types of decision-making statements.

1) if statement

2) if-else statement

3) The switch statement

if statement

if statement is the most used decision-making statement in the java programming language.

syntax :

if(condition)

{

// code to be executed

}

if-else statement

it is similar to the if statement, here we will add a block of statements to be executed when

condition fails, which will be written under else case. If the value of the condition statement is true,

then if block will be executed, otherwise the else block will be executed.

if (condition statement) {

// code to be executed

}

else {

// code to be executed

}

Nested if- else

In Nested if – else we can add one if-else block in another if-else block. In following we are

adding an inner if-else block in the outer if block.

if(condition 1)

{

code to be executed

}

else

{

if(condition 2)

{

code to be executed -

}

else

{

code to be executed

}

}

Switch statement

In the switch statement, there could be several execution paths, each block the control will be

transferred based on case value

switch(week)

{

case 1:

printf("Monday"); break;

case 2:

printf("Tuesday"); break;

case 3:

printf("Wednesday"); break;

case 4:

printf("Thursday"); break;

case 5:

printf("Friday"); break;

case 6:

printf("Saturday"); break;

case 7:

printf("Sunday"); break;

default:

printf("Invalid input! Please enter week number between 1-7.");

}

In the above example switch will receive an integer value in variable week, based on week

value corresponding case statements will be executed. if value doesn’t match with any case value the

default will be executed.

Looping Statements

In looping statements, we are making a decision and executing the block of code multiple times.

Until the condition is true, we are looping over the block of the code.

Each time we will check if the result of our decision statement is true or not, until and unless the

result is true, we will execute the block of the code.

We can classify the lopping statements as follows:

1) for loop

2) while loop

3) do-while loop

1) for loop

In the for loop, we are going to check the value of the condition statement. If the value is

true, the block of the code will be executed. After the successful execution of the code block, control

again goes to the condition statement. Now, if the value is true, again the block of the code will be

executed. Also, we are declaring one variable which stores the number of iteration. Each time the for

loop runs, the value of i will be increased or decreased.

for(init variable declaration ; condition ; increment /decrement){

// code to be executed

}

while loop

In a while loop, we do apply the initialization, condition statement and an increment or

decrement operator like the for loop but the syntax differs

init variable declaration while (condition){

// code to be executed

// increment or decrement statement

}

Example :

int i = 1; while(i<=5) {

System.out.println(i); i++;

}

System.out.print(“End of while loop”);

In the first line of the code, we are initializing a variable i of integer type with the value 1. In the

next statement, we are checking the condition, if the value of the condition statement is true, the

block of code will be executed.

When looking at the block of the code, at the end of the block you can see an increment operator, the

value of i will increase by one, and the control goes to the condition statement. If the value of i is

less than the 5, the block of code executes repeatedly.

When the value of the condition statement is false, the control goes to the next line of code after the

while loop.

do -while loop

In the while loop, we are checking the condition statement first and then executing the block

of code. But in the do-while loop, we are first executing the block of code and then checking the

condition. If the value of the condition statement is true, the control goes at the starting of the code

block, and the whole block of the code will be executed. Once the value of the condition statement is

false, the control goes to the next line of code after the do-while loop.

init variable declaration do {

//code to be executed

} while (condition statement);

The difference between the while and do-while loop is, in a while loop, we check the condition and

executes the block of code, but in the do-while loop, we first execute the block of code and then

check the condition.

Branching Statements

1. break statement

2. continue statement

3. return statement

break statement

break statement terminates the control flow. Usually, we do use the break statement to

terminate the flow of for, while and do-while loop.

for(int i = 0; i<=5; i++)

{

if(i == 4) { break;

}

System.out.println(i);

}

The above code will print number from 1 to 3 and when i value becomes 4, the break statement will

be executed and terminates from loop

continue statement

continue statement skips the current iteration of the for, while and do-while loop. The simple

continue statement skips the iteration of the loop and sends the control back to the condition

statement. The code after the continue statement will not be executed for the current iteration

for(int i = 0; i<=5; i++)

{

if(i == 4) { continue;

}

System.out.print(i);

}

The above loop will print numbers from 1 to 3, when i equals 4, the following statements

will be skipped and controller will go back to the condition to execute next iteration of statements.It

will print 1 2 4 5

4. return statement

In general return statement will be last line of the method. The return statement exits from

the current method and control flow return to the line from which the method was invoked.

void m1()

{

int a = 5; int b = 6; int sum;

sum = add(a,b);

System.out.println(“result is ”+ sum)

}

int add(int I, int j)

{

int s = i+j;

return s;

}

In the above example when add function is called, controller will reach the add function,

after executing statements of add, the return statement will return the controller back to calling

method, using return we can even return values to calling method.

umashankar.5544@gmail.com

UNIT-II:

Classes and Objects: Classes and objects, Class declaration, Creating objects, Methods,

Constructors and Constructor Overloading, Importance of Static Keyword and Examples,

this Keyword, Arrays, Command Line Arguments, Nested Classes.

Classes and Objects:

 Java achieves oops principles with the help of classes and objects.

Class: A class is a blueprint from which the individual objects are created. It represents the

state and behaviour of an entity (anything that has existence with some properties and

behaviour like car, student, laptop, bag, university, player, etc). A class is a logical entity

Object: An Object is the instance for a class (instance – initialization). An Object is a physical

entity because it has memory allocated for all variables in the class. we can create any no of

objects for the single class.

example:

let say I want to store 60 student’s information like roll_num, name, age, marks. before

knowing their property values, we will define a prototype suitable for them called as ‘class’.

A class is declared using the keyword ‘class’. all the properties and functions related

to an entity are defined with in that class.

create class Student -

class Student

{

 String roll_num;

 String name;

int age;

int marks;

 void writeExams()

{

 ::::::

}

void attendClasses()

{

::::::

}

} // end of class

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

Now whenever we want to store a student information, we request memory for storing

the property values, the allocated memory to store student information is called as

‘object/instance’.

General Form of a Class:

A class generally contain three sections - variables, constructors and methods.

Variables represent its state/properties in form of fields. Class can have static and

instance variables. functionality/behaviour will be implemented in methods under a class.

Class can have static and instance methods. Constructors will initialize the instance variables

of a class when an abject is created.

General form or Syntax of a Class

class NameOfClass

{

 // instance variable declaration

 type1 varName1 = value1;

 type2 varName2 = value2;

 :

 :

 typeN varNameN = valueN;

 // Constructors

 // no argument constructor

 NameOfClass()

 {

 // body of constructor

 }

 :

 :

 // constructor with arguments, we can define any more than one constructor to same

same

 NameOfClass (cparamN)

 {

 // body of constructor

 }

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 // Methods

 static returnType1 methodName1(mParams1)

 {

 // body of static method

 }

 :

 :

 returnTypeN methodNameN(mParamsN)

 {

 // body of instance/non-static method

 }

}

class is keyword used to define the new class

Variables named varName1 through varNameN are declared inside the class and

outside of all methods are called instance variables. Each variable must be assigned a type

shown as type1 through typeN(any primitive data type like int,float,char,..) and may be

initialized to a value shown as valueN. if a variable is declared by keyword static then they

belong to all objects called as static or class variables (we will cover about static later, in this

chapter)

Constructors are used to initialize the instance variables of an object, executed when

an object is created. It always has the same name as the class. They will not return any value.

A constructor can be defined with or without arguments. We can define more than one

constructor for a class.

Methods named mthName1 through mthNameN should be defined with in the class. A

static method can be called directly from main/any static method. a non-static method should

be called through an object only.

when we want to run a class, a main method should be defined in it with following

signature. Java program execution starts from main method. A main method is the starting

point for execution by JVM.

public static void main(String arguments[])

{

}

Declaring Objects using new

The new operator instantiates a class by dynamically allocating (i.e, allocation at run

time) memory for a new object and returning a reference to that memory. This reference is

then stored in the variable declared with type class name.

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

creating objects for class Student –

 an object for class can be created using the key word ‘new’

Student obj1 = new Student ();

 Student obj2 = new Student ();

 Student obj3 = new Student ();

obj1.roll_num = 64; obj1.roll_num = “Rahul”; obj1.age = 14; obj1.age = 85;

obj2.roll_num = 54; obj2.roll_num = “Mani”; obj2.age = 15; obj2.age = 80;

obj3.roll_num = 74; obj3.roll_num = “Kiran”; obj3.age = 14; obj3.age = 52;

As shown in above diagram whenever a new object is created using new, an instance

for class will be created, and can be accessed through class reference variables like obj1,

obj2, obj3.

Write a program in single java file, which contains two classes Teacher and Student,

Student should have properties rollnum, name and marks. and functions increment,

decrement which will increment and decrement marks by 10.

In class Teacher write a main method, in that create two student class objects initialize

their properties and later call increment() on 1st student object and call decrement() on

second Student object.

class Student

{

 int roll_num;

 String name;

 int marks;

roll_num = 64

name = Rahul

age = 14

marks = 85

writeExams()

attendClasses()

roll_num = 54
name = Mani

age = 15
marks = 80

writeExams()

attendClasses()

roll_num = 74
name = kiran
age = 14
marks = 52

writeExams()

attendClasses()

obj1

obj3 obj2

Insatnce of class

Student

Insatnce of class

Student
Insatnce of class

Student

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 void increment()

 {

 marks = marks + 10;

 }

 void decrement()

 {

 marks = marks - 10;

 }

}

class Teacher

{

 public static void main(String args[])

 {

 Student s1 = new Student();

 Student s2 = new Student();

 s1.roll_num = 54;

 s1.name = "Rahul";

 s1.marks = 55;

 s2.roll_num = 64;

 s2.name = "Kiran";

 s2.marks = 80;

 System.out.println("intial marks of student "+s1.name+" are "+s1.marks);

 s1.increment();

 System.out.println("after increment marks of student "+s1.name+" are

"+s1.marks+"\n");

 System.out.println("intial marks of student "+s2.name+" are "+s2.marks);

 s2.decrement();

 System.out.println("after decrement marks of student "+s2.name+" are "+s2.marks);

 }

}

OutPut –

intial marks of student Rahul are 55

after increment marks of student Rahul are 65

intial marks of student Kiran are 80

after decrement marks of student Kiran are 70

Methods –

A method is a set of statements written with in the block to perform certain operation.

Methods allow us to reuse the code, we can call a method any no of times to repeat the

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

execution of statements under it. A method must be declared within the class. Following is the

syntax to define a method.

modifier returnType nameOfMethod (Parameter List)
{
 // method body
}

The components in a method include −

• modifier − It defines the access type of the method and it is optional to use.

• returnType − Method may return value of any type. if returns nothing type is void.

• nameOfMethod − This is name of the method.

• Parameter List − The list of parameters, also called as arguments. A method can have
any no of arguments. These are optional

• method body − The method body defines statements for implementing the
functionality.

Let’s practice some programs on methods for better understanding.

Write a program with class name MethodExample, this class should contain a method

called display, which prints “This is an example for method ” and it returns nothing.

class MethodExample
{
 void display()

{
 System.out.println(“This is an example for method”);
}
public static void main(String args[])
{
 display (); // a non-static method cannot be called without an object
 MethodExample obj = new MethodExample();
 obj.display();
}

}

OutPut:

This is an example for method

Write a program with class name MethodExample, this class should contain a method

called display, it takes a String parameter of user name and prints “welcome to methods

username“ and it returns nothing.

class MethodExample
{
 void display(String userName)
 {
 System.out.println("Welcome to methods " + userName);
 }

 public static void main(String args[])

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 {
 MethodExample obj = new MethodExample ();
 obj.display("Rahul"); // string literal is passed directly

 String name = "kiran";
 obj.display(name); // String literal is stored in a variable and then passed
 }
}

OutPut:
Welcome to methods Rahul
Welcome to methods kiran

Write a program with class name MyMethod, this class should contain a method called
sum, it takes two integer parameters and prints their sum and it returns nothing.
class MyMethod
{
 void sum(int num1, int num2)
 {
 int sum;
 sum = num1+num2;
 System.out.println("sum of variables is " + sum);
 }

 public static void main(String args[])
 {
 MyMethod obj = new MyMethod ();
 obj.sum(2,4); // integer literals are passed directly

 int i=12,j=4;
 obj.sum(i,j); // integer literals are stored in variables and then passed
 }
}

OutPut:
sum of variables is 6
sum of variables is 16

Write a program with class name MyMethod, this class should contain a method called
sum, it takes two integer parameters and returns their sum, you should print sum value
in main method after completing the function call.
class MyMethod
{
 int sum(int num1, int num2)
 {
 int sum;
 sum = num1+num2;
 return sum;
 }
 public static void main(String args[])
 {
 MyMethod obj = new MyMethod ();
 int result;
 result = obj.sum(2,4);
 System.out.println("received sum value from function "+result);

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 int i=12,j=4;
 result = obj.sum(i,j);
 System.out.println("received sum value from function "+result);
 }
}
OutPut:
received sum value from function 6
received sum value from function 16

Note:
* We can return a value or variable with keyword return.
* It is must to hold the returned value at function call. In our example the sum is returned
 and received value is captured under the variable result.

Constructors in Java

Constructors are used to initialize the instance variables of class, at the time of creating object.

rules to be followed for defining a constructor

1. Constructor name must be the same as its class name

2. Constructor should not be associated with any return type, not even void. A

constructor will never return anything.

There are two types of constructors in Java:

1. Default constructor (constructor without any arguments)

2. Parameterized constructor (constructor with arguments)

Default Constructor (constructor without any arguments)

 A constructor that has no parameter is known as default constructor. If we don’t define
a constructor in a class, then compiler creates default constructor for that class.

Write a program with class name MyDefaultConstructor, which have a default
constructor that prints “My program using default constructor”.

public static void main (String args[])
{

result = obj.sum (2, 4);

}

int sum (int num1, int num2)
{
 int sum;
 sum = num1+num2;
 return sum;
}

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

class MyDefaultConstructor
{
 MyDefaultConstructor ()

{
 System.out.println(“My program using default constructor”);
}

public static void main(String args[])
{

MyDefaultConstructor obj = new MyDefaultConstructor();
}

}

OutPut :

My program using default constructor.

Parameterized constructor (constructor with arguments)

A constructor that has parameters is known as parameterized constructor. If we want
to initialize variables of the class with your own values, then use a parameterized constructor.

Write a program with class name Box, define a parameterized constructor to initialize
instance variables. write a method areRectangle to calculate area of rectangle.

class Box

{

 int length;

 int width;

 //Constructor for rectangle when two parameters are passed.

 Box (int l, int w)

 {

 length=l;

 width=w;

 }

 int areaRectangle()

 {

 return length*width;

 }

 public static void main(String args[])

 {

 Box obj = new Box (10,20);

 int area;

 area = obj.areaRectangle();

 System.out.println("Area of rectangle is " + area);

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 }

}

OutPut:

Area of rectangle is 200

constructor overloading

 Constructor overloading means defining two or more constructors for same class. The

name of all constructors will be same, only number of arguments or type of arguments will be

different.

when you pass arguments, the constructor which matches number of arguments and

type of arguments will be executed automatically.

Write a program to find area of square and rectangle, with help of constructor

overloading.

class Box

{

double length;

double width;

//Constructor for rectangle when two parameters are passed.

Box (double l,double w) {

length=l;

width=w;

}

//Constructor for square when one value is initialized(area).

Box (double l) {

length=l;

}

double AreaRectangle() {

return length*width;

}

Box rectangle = new Box (10,20);

Box (int l, int w)
{
 length=l; // l = 10
 width=w; // w = 20
}

obj
length = 0
width = 0

length = 10
width = 20

before

constructor is

called

after

constructor is

executed

3 object assigned to reference

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

double AreaSquare() {

return length*length*length;

}

}

//Main class from where program execution begins

class Square_Rectangle_Const_Overloading {

public static void main (String args[]) {

Box rectangle = new Box (10,20);

Box square = new Box (10);

System.out.println("Area of rectangle is " + rectangle.AreaRectangle());

System.out.println("Area of square is " +square.AreaSquare());

}

}

OutPut:

Area of rectangle is 200.0

Area of square is 1000.0

class Square_Rectangle_Const_Overloading
{

 public static void main (String args[])
 {

 Box rectangle = new Box (10,20);

 Box square = new Box (10);

 System.out.println("Area of rectangle is "

 + rectangle.AreaRectangle());

 System.out.println("Area of square is "

 +square.AreaSquare());

 }

}

class Box

{

 double length;

 double width;

//Constructor for rectangle of two parameters is called.

 Box (double l,double w) {

length=l;

width=w;

 }

//Constructor for square of one value is initialized(area).

 Box (double l) {

length=l;

 }

 double AreaRectangle() {

return length*width;

 }

 double AreaSquare() {

return length*length*length;

 }

}

length = 0

width = 0

length = 0

width = 0

before

constructor is

called

length = 10

width = 20

length = 10

width = 0

 constructor new

Box(10, 20);

called

 constructor new

Box(10);

called

rectangle square

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

Method Overloading:

 Method Overloading (or) static polymorphism allows a class to have more than

one method to have the same name, if their argument lists are different.

A method is said to be overloaded, if two methods with same name differ by any of these

1. Number of parameters

example:

add(int a, int b) // function have two arguments

{

 :::::::

}

add(int, int, int) // function have three arguments

{

 :::::::::

}

2. Data type of parameters

example:

add(int a, int b) // function have two int arguments

{

 :::::::

}

add(int a, float b) // function have one int argument and one float argument

{

 :::::::::

}

3. Order of parameters

example:

add(int a, float b, int c) // function have two arguments

{

 :::::::

}

add(int a, int c, float b) // function have three arguments

{

 :::::::::

}

Write a program to print sum of given numbers, implement it through method

overloading.

class MethodOverloading
{

 void sum (int a, int b)
 {

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 int sum;
 sum = a+b;
 System.out.println("method sum declared with two integer arguments");
 System.out.println("sum is "+sum);
 }

 void sum (int a, int b, int c)
 {
 int sum;
 sum = a+b+c;
 System.out.println("this method differs by number of arguments");
 System.out.println("sum is "+sum);
 }

 void sum (int a, float b)
 {
 float sum;
 sum = a+b;
 System.out.println("this method differs by type of arguments");
 System.out.println("sum is "+sum);
 }

 void sum (float b, int a)
 {
 float sum;
 sum = a+b;
 System.out.println("this method differs by order of arguments");
 System.out.println("sum is "+sum);
 }
 public static void main (String args[])
 {
 MethodOverloading obj = new MethodOverloading();
 obj.sum(2, 4);
 obj.sum(2, 4, 6);
 obj.sum(2, 3.4f);
 obj.sum(3.4f, 2);
 }

}

OutPut:
method sum declared with two integer arguments
sum is 6
this method differs by number of arguments
sum is 12
this method differs by type of arguments
sum is 5.4
this method differs by order of arguments
sum is 5.4

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

Note:
A method will not be overloaded by return type of that method, for example if two

methods have same name, same parameters and have different return type, then this is not a
valid method overloading. It will be a compilation error “method has been already defined”.

Static keyword:

 When a member is declared static, it can be accessed before any objects of its class
are created. We can apply static keyword with variables, methods, blocks and nested class.

why static variables?

write a program to define student class with properties name, rollnum, teacher, branch.
create 3 student objects with different properties initialized through a constructor. print
all student details.

public class StaticExample
{

 String name;
 int roll_num;
 String teacher;
 String branch;

 StaticExample(String name, int roll_num, String teacher, String branch)
 {
 this.name = name;
 this.roll_num = roll_num;
 this.teacher = teacher;
 this.branch = branch;
 }

 void displayDetails()
 {

System.out.println("name is "+name+" roll_num is "+roll_num+" teacher is "
 +teacher+" branch is "+branch);

 }

 public static void main(String args[])
 {
 StaticExample s1=new StaticExample("Rahul",64,"prabhakar","CSE");
 StaticExample s2=new StaticExample("Ravi",34,"prabhakar","CSE");
 StaticExample s3=new StaticExample("kiran",54,"prabhakar","CSE");

 s1.displayDetails();
 s2.displayDetails();
 s3.displayDetails();
 }
}

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

OutPut:
name is Rahul roll_num is 64 teacher is prabhakar branch is CSE
name is Ravi roll_num is 34 teacher is prabhakar branch is CSE
name is kiran roll_num is 54 teacher is prabhakar branch is CSE

Like this, if I’m going to create total of 195 student objects. then lot memory will be

misused to store redundant(repeated) information. As a good programmer we should always
care about memory and execution time. Either it may be ‘program statements’ (or) ‘data’, we
should never repeat.

static variables:

When a variable is declared as static, then a single copy of variable is created and

shared among all objects.

For the above program, to store student details declare the properties teacher and

branch as static and implement the same functionality

public class StaticExample
{

 String name;
 int roll_num;
 static String teacher = "Mr. Prabhakar";
 static String branch = "CSE";

StaticExample s1=new StaticExample("Rahul",64,"prabhakar","CSE");

StaticExample s2=new StaticExample("Ravi",34,"prabhakar","CSE");

StaticExample s3=new StaticExample("kiran",54,"prabhakar","CSE");

this.name = name;

this.roll_num =roll_num;

this.teacher = teacher;

this.branch = branch;

S1
name = “Rahul”

roll_num = 64

teacher = “Prabhakar”

branch = “CSE”

name = “Ravi”

roll_num = 34

teacher = “Prabhakar”

branch = “CSE”

name = “Kiran”

roll_num = 54

teacher = “Prabhakar”

branch = “CSE”

S2 S3 data common to all student Objects. Is it

possible to create a single variable which can

be shared by all students object’s, unlike

storing same information in each and every

object ?

(yes possible through static)

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 StaticExample(String name, int roll_num)
 {
 this.name = name;
 this.roll_num = roll_num;
 }

 void displayDetails()
 {
 System.out.println("name is "+name+" roll_num is "+roll_num+" teacher is

"+StaticExample.teacher+" branch is "+StaticExample.branch);
 }

 public static void main(String args[])
 {
 StaticExample s1=new StaticExample("Rahul",64);
 StaticExample s2=new StaticExample("Ravi",34);
 StaticExample s3=new StaticExample("kiran",54);

 s1.displayDetails();
 s2.displayDetails();
 s3.displayDetails();
 }
}

OutPut:
name is Rahul roll_num is 64 teacher is Mr. Prabhakar branch is CSE
name is Ravi roll_num is 34 teacher is Mr. Prabhakar branch is CSE
name is kiran roll_num is 54 teacher is Mr. Prabhakar branch is CSE

StaticExample s1=new StaticExample("Rahul",64);

StaticExample s2=new StaticExample("Ravi",34);

StaticExample s3=new StaticExample("kiran",54);

this.name = name;

this.roll_num =roll_num;

S1

name = “Rahul”

roll_num = 64

name = “Ravi”

roll_num = 34

name = “Kiran”

roll_num = 54

S2 S3

teacher = “Prabhakar”

branch = “CSE”

static / class members

shared by all objects

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

In the above program, member data teacher and branch are declared static, so only

one variable for each teacher and branch will be created at class level. This static data will be

shared by all student objects. it is programmer responsibility to identify which data (or)

methods will be common to all objects and mark them as static, whereas data specific for

individual objects should be non-static. here rollnum and name of student cannot be shared

they are individual for each student object called as instance (or) object data.

Note:

1. static variables can be accessed from static blocks and static methods only.

static members can be accessed

 i) directly without an object ii) with class name iii) using object

2. static members cannot invoke or access non static members.

static methods:

A static method can be invoked without creating an instance of class, they can be accessed

directly or by class name.

A static method can access static data members only.

write a program with static method display, it accepts an integer number and print the

square value of it, call the method display from main function by passing value 5.

class StaticExample
{
 static void display(int n)
 {
 int res;
 res = n*n;
 System.out.println("square value of "+ n +" is "+res);
 }

 public static void main(String args[])
 {
 display(5);
 }

}

OutPut:

square value of 5 is 25

static block:

 whenever a java class file is executed, static block and static methods will be loaded.

From static blocks and static methods, static block will be executed first. Later among the

static methods JVM will start executing main method with following signature

public static void main(String args[])

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

static blocks are used to initialize the static variables.

Write a program with any print statement in static block.

class StaticExample
{
 static
 {
 System.out.println("static block will be executed first");
 }
 public static void main(String args[])
 {
 System.out.println("main will be executed after static block");
 }
}

OutPut:

static block will be executed first.

main will be executed after static block.

this keyword:

 ‘this’ is a reference, that refers to the current class object.

write a program to initialize instance variables in constructor.

class Example
{
 int a;
 float b;

 Example(int j, float k)
 {
 a = j;
 b = k;

}

public static void main(String args[])
{
 Example obj = new Example(5,5.4f);
 System.out.println(obj.a);
 System.out.println(obj.b);

}

}

OutPut:
5
5.4

what if variables declared inside constructor j, k are named with same name as

instance variables i.e., a, b. then how to initialize instance variables ?

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

class Example
{
 int a;
 float b;

 Example(int a, float b)
 {
 a = a;
 b = b;

}

public static void main(String args[])
{
 Example obj = new Example(5,5.4f);
 System.out.println(obj.a);
 System.out.println(obj.b);

}

}

OutPut:
0
0.0
though constructor is defined to initialize instance variables, it has no effect because,

inside constructor
a = a;
b = b;

both at lhs and rhs a,b refers to same local variables that are declared inside

constructor.

we can refer to instance variables using this operator, that refers to current object
class Example
{
 int a;
 float b;

 Example(int a, float b)
 {
 this.a = a;
 this.b = b;

}

public static void main(String args[])
{
 Example obj = new Example(5,5.4f);
 System.out.println(obj.a);
 System.out.println(obj.b);

}

}

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

OutPut:
5
5.4

this can also be used

1. to invoke current class method.

2. to invoke current class constructor.

3. this can be passed as an argument in the method call.

invoke current class method using this.

class ThisMethod
{
 void display()
 {
 System.out.println("from method display");
 }
 void n()
 {
 System.out.println("calling method using this");
 this.display();
 }

}
class ThisExample
{
 public static void main(String args[])
 {
 ThisMethod a=new ThisMethod();
 a.n();
 }
}

OutPut:
calling method using this
from method display

invoke current class constructor

The this() constructor call can be used to invoke another constructor of same class.

Program to invoke no argument constructor from parameterized constructor using

this()

class ThisConstructor
{
 ThisConstructor()
 {
 System.out.println("From Constructor with no arguments.");
 }
 ThisConstructor(int x)

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 {
 this();
 System.out.println("controller back to Parameterized constructor");
 System.out.println("value passed to constructor is "+x);
 }
}
class ThisExample
{
 public static void main(String args[])
 {
 ThisConstructor a = new ThisConstructor(10);
 }
}

OutPut:
From Constructor with no arguments.
controller back to Parameterized constructor
value passed to constructor is 10

Program to invoke parameterized constructor from, no argument constructor using
this(argument)

class ThisConstructor
{
 ThisConstructor()
 {
 this(20);
 System.out.println("controller back to no argument constructor");

 }
 ThisConstructor(int x)
 {
 System.out.println("From Constructor with arguments.");
 System.out.println("value received is "+x);
 }
}
class ThisExample
{
 public static void main(String args[])
 {
 ThisConstructor a = new ThisConstructor();
 }
}

OutPut:

From Constructor with arguments.
value received is 20
controller back to no argument constructor

passed as an argument in the method call

The this can also be passed as an argument in function call. It is mainly used in the event
handling. Let's see the example:

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

class ThisExample
{
 int a;
 int b;

 ThisExample()
 {
 a = 10;
 b = 20;
 }

 void display(ThisExample obj)
 {
 System.out.println("a = " + obj.a + " b = " + obj.b);
 }

 void get()
 {
 display(this);
 }

 public static void main(String[] args)
 {
 ThisExample object = new ThisExample();
 object.get();
 }
}

OutPut:

a = 10 b = 20

Arrays one Dimensional and multidimensional

Array: An array is a data structure that stores elements of same data type in

contiguous memory location. Once array size is defined it cannot be increased (or)

decreased. The first element of an array starts with the index 0.

why arrays?

when you want store student marks, we will declare a variable and store value

 int studentMarks; studentMarks = 92;

what if we need to store 90 students’ marks, are we going to create 90 variables,

oh it will be very difficult to program and maintain then. arrays will help us to store all

these 90 student marks under same array name differed by array index (address

location).

int studentMarks[] = new int[90];

studentMarks[0] = 80 // first element in array – marks of 1st student,

studentMarks[1] = 65 // second element in array – marks of 2nd student,

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

……………

studentMarks[89] = 90 // last element in array – marks of 90th student

Declaring an Array –

 datatype[] arrayname = new datatype[size];

(or)

 datatype arrayname[] = new datatype[size];

Initializing array -

 arrayname[index] = value;

Example –

//To create an array with name myarray of size 3.

 int myarray[] = new int[3];

Initializing

 myarray[0] = 1;

 myarray[1] = 2;

 myarray[2] = 3;

Note: If the array elements are known at the time of array declaration, we can initialize

array elements along with the declaration itself as

 int myarray[] = {1,2,3,4,5};

an array, myarray will be created of size 5 with elements stored from index 0 to 4.

 System.out.println(myarray[0]) // prints 1

 System.out.println(myarray[4]) // prints 5

Write a program to declare an array with size n, then read n no of elements and

store them in that array.

import java.util.Scanner;

class MyExample

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

{

 public static void main(String args[])

{

 int n;

 Scanner sc = new Scanner(System.in);

System.out.println(“How many elements you want to store :”)

 n = sc.nextInt();

 int ary[] = new int[n];

// reads n elements from console, and stores in to array, ary

System.out.println(“Enter ”+n+” no of elements”);

 for(int i= 0; i<n;i++)

{

 ary[i] = sc.nextInt();

 }

// print each value stored in the array ary,

System.out.println(“elements stored in array are”);

 for(int i = 0; i< n; i++)

{

 System.out.println(ary[i]);

}

}

}

OutPut:

How many elements you want to store : 4

Enter 4 no of elements: 2 4 6 8

elements stored in array are

2 4 6 8

Multidimensional arrays:

 A multi dimensional array, is array for arrays. It has multiple levels. The simplest

multi-dimensional array is the 2D array i.e., two-dimensional array

why multi-dimensional array?

 when I want to store students’ total marks, a one Dimensional array is enough.

what if we want to store the 6 subject’s marks of 90 students, we cannot accommodate

them in one dimensional array, and we cannot declare 90*6 = 540 variables and

memorize them.

In such a scenario, we can use 2-Dimensional array. one dimension to represent

student number and other dimension to represent subject wise marks.

int studentSubjectWiseMarks[][] = new int[90][6];

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

A two-dimensional array can also be treated as rows and columns, in the above

declaration studentSubjectWiseMarks we will have 90 rows and 6 columns for each

row. where the row index and column index both starts from 0.

practice indexing,

let’s assign first student, six subject marks with 80, 60,56,70,86,90

studentSubjectWiseMarks[0][0] = 80;

studentSubjectWiseMarks[0][1] = 60;

studentSubjectWiseMarks[0][2] = 56;

studentSubjectWiseMarks[0][3] = 70;

studentSubjectWiseMarks[0][4] = 86;

studentSubjectWiseMarks[0][5] = 90;

second student, six subject marks with 70, 64,58,74,86,70

studentSubjectWiseMarks[1][0] = 70;

studentSubjectWiseMarks[1][1] = 64;

studentSubjectWiseMarks[1][2] = 58;

studentSubjectWiseMarks[1][3] = 74;

studentSubjectWiseMarks[1][4] = 86;

studentSubjectWiseMarks[1][5] = 70;

……………………………………………………………………

90th student, six subject marks with 90, 90,90,80,86,70

studentSubjectWiseMarks[89][0] = 90;

studentSubjectWiseMarks[89][1] = 90;

studentSubjectWiseMarks[89][2] = 90;

studentSubjectWiseMarks[89][3] = 80;

studentSubjectWiseMarks[89][4] = 86;

studentSubjectWiseMarks[89][5] = 70;

Note:

The important thing that we should be careful is with indexing of an element. If

you understand how to identify an element with its index you can simply play with

arrays.

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 The frequent error you will observe while dealing with arrays is Array Index Out

of Bounds Exception.

int a[] = new int[5]

here lower bound index is 0, upper bound index is 4, total 5 elements.

if we try to access an element out of these bounds, we will get, Array Index Out of

Bounds Exception.

a[0] = 1; a[1] = 2; a[2] = 3; a[3] = 4; a[4] = 5; These are perfectly valid.

a[-1] = 3; a[5] = 4; a[56] = 7; these will cause an Array Index Out of Bounds Exception.

Declaring 2 – Dimensional array:

int matrix[][] = new int[4][3];

Initializing 2-D array:

matrix[0][0] = 1; matrix[0][1] = 2; matrix[0][2] = 3;

matrix[1][0] = 4; matrix[1][1] = 5; matrix[1][2] = 6;

matrix[2][0] = 7; matrix[2][1] = 8; matrix[2][2] = 9;

matrix[3][0] = 10; matrix[3][1] = 11; matrix[3][2] = 12;

rows ↓ columns
 →

0 1 2

0 matrix[0][0] matrix[0][1] matrix[0][2]

1 matrix[1][0] matrix[1][1] matrix[1][2]

2 matrix[2][0] matrix[2][1] matrix[2][2]

3 matrix[2][0] matrix[3][1] matrix[3][2]

write a program to store elements from 1 to 12, using 2-D array of order 4*3

public class MatrixExample
{
 public static void main(String args[])
 {
 int matrix[][] = new int[4][3];
 int k=1;
 for(int i = 0; i<4; i++) // represents rows
 {
 for(int j = 0; j<3; j++) // represents columns
 {
 matrix[i][j] = k; // storing elements in array
 k++;
 }
 }

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 // display all the elements in matrix array
 for(int i = 0; i<4; i++)
 {
 for(int j = 0; j<3; j++)
 {
 System.out.println(matrix[i][j]);
 }
 }
 }
}

OutPut :

1 2 3 4 5 6 7 8 9 10 11 12 (I know they will print line by line, don’t want to make the
document lengthy).

write a program that will ask the user for no of rows and no of columns, to
declare 2-D array, and then ask user to enter elements for that matrix. finally
print the elements in matrix format.

import java.util.*;
public class Example
{
 public static void main(String args[])
 {
 int rows, columns;
 Scanner sc = new Scanner(System.in);

 System.out.print("Enter no of rows: ");
 rows = sc.nextInt(); // reads no of rows

 System.out.print("Enter no of columns: ");
 columns = sc.nextInt(); // reads no of columns

// Now declare 2-D array with specified rows and columns
 int matrix[][] = new int[rows][columns];
 System.out.print("Enter elements into matrix: ");
 for(int i = 0; i<rows; i++) // represents rows
 {
 for(int j = 0; j<columns; j++) // represents columns
 {
 matrix[i][j] = sc.nextInt(); // read element into the array
 }
 }

 // display all the elements in matrix array
 for(int i = 0; i<rows; i++)
 {
 for(int j = 0; j<columns; j++)
 {

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 System.out.print(matrix[i][j]+" ");
 }
 System.out.println(); // line break, after printing each row elements
 }
 }
}

OutPut:

Enter no of rows: 3
Enter no of columns: 3
Enter elements into matrix: 1 2 3 4 5 6 7 8 9
1 2 3
4 5 6
7 8 9

* Note : Finding length of an array, most important
How to get no of elements/size of an array
arrayname.length will give us the size

example –
int a[] = new int[4];
System.out.println(a.length);
the output on console will be 4.

Program to print first and last elements of an array
public class ArrayExample
{
 public static void main(String args[])
 {
 int a[] = {1,2,3,4};
 display(a);
 }
 static void display(int b[])
 {
 int firstIndex = 0;
// b.length will give size 4, but last index is 3, as index starts from 0
 int lastIndex = b.length-1;
 System.out.println("First element is "+b[firstIndex]);
 System.out.println("Last Element is "+b[lastIndex]);
 }
}
OutPut :
First element is 1
Last Element is 4

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

Jagged Arrays:

Jagged array is a multidimensional array where member arrays are of different
size. each row will have different no of elements in column .

Let say I want to store Student numbers of 3 sections, where each section have

different number of students.
section 1 contains 64 students,
section 2 contains 65 students
section 3 contains 66 students

how to declare, first declare array with no of rows i.e., 3

int students[][] = new int[3][];

now declare size of each row, called member array.

students[0] = new int[64];
students[1] = new int[65];
students[2] = new int[66];

write a program that store elements if following manner
there should be 3 rows,
1st row stores elements 1,2
2nd row stores elements 3,4,5
3rd row stores elements 6,7,8,9

public class ArrayExample
{
 public static void main(String args[])
 {
 int rows = 3;
 int num = 1;

 int a[][] = new int[rows][];
 a[0] = new int[2];
 a[1] = new int[3];
 a[2] = new int[4];

 for(int i=0; i<a.length; i++)
 {
 for(int j = 0;j<a[i].length; j++)
 {
 a[i][j] = num;
 num++;
 }
 }

 for(int i=0; i<a.length; i++)

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 {
 for(int j = 0;j<a[i].length; j++)
 {
 System.out.print(a[i][j]+" ");
 }
 System.out.println();
 }

 }
}

OutPut:
1 2
3 4 5
6 7 8 9

Command line arguments:

 Command Line Arguments is the information passed to program, at the time of execution.

The passed information is stored as a string array in the main method. Command line

arguments can be retrieved from String args[] array declared in main function.

Write a program to print given name and branch details, passed at run time using

command line arguments.

class CommandLineArguments
{
 public static void main (String args[])
 {
 System.out.println("name is "+args[0]);
 System.out.println("branch is "+args[1]);
 }
}
OutPut:

C:\Users\UMA SHANKAR\Desktop>javac StaticExample.java

C:\Users\UMA SHANKAR\Desktop>java StaticExample Ravi ECE

name is Ravi

branch is ECE

Garbage Collection:

 In C, C++ languages, it is the programmer’s responsibility to free the memory allocated

dynamically, using free() function. If a programmer knowingly or unknowingly doesn’t free the

memory he consumed, it effects the application performance because of inefficient memory

utilization. Whereas, Java takes care of memory management. java itself is responsible to free

the unused (un referenced) object data.

 In the Java, memory will be allocated to objects dynamically using the new operator. Once

an object is created, the memory remains allocated till there are references for this object.

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

 Garbage Collector is a program in java, which is responsible for de-allocating memory

occupied by un referenced objects. Garbage collector will be running periodically to de allocate

memory of unused objects.

 When a java object is being destroyed, Garbage Collector calls finalize() method on the

object to perform clean-up activities(free the resources accessed by that object). Once

finalize() method is executed, Garbage Collector will destroy that object.

when an object is said to be ready for garbage collection ?

1. object reference variable is made null

2. when object reference variable points to another object

‘to be specific when there is not at least one reference to that object’

Write a program implementing finalize() method with any print statement, and make it

executed from garbage collector

public class GarbageCollectionExample
{
 public void finalize()
 {
 System.out.println("object is garbage collected");
 }
 public static void main(String args[])
 {

GarbageCollectionExample s1 = new GarbageCollectionExample();
 s1 = null;
 System.gc();
 }
}

OutPut:

object is garbage collected.

Nested Classes

java allows us to define a class within another class, known as the nested class

class OuterClass {

 ...

 class NestedClass {

 ...

 }

}

Nested classes are divided into static and non-static. Nested classes that are declared as

static are called static nested classes. Non-static nested classes are called inner classes.

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

class OuterClass {

 ...

 //static nested class

 static class StaticNestedClass {

 ...

 }

 //non-static nested class

 class InnerClass {

 ...

 }

}

Note:

Static nested classes do not have access to non-static members of the outer class.

As a member of the outer class, a nested class can be declared private, public, protected or
can be left default.

Static Nested class :

An Nested class can be declared static, which means that you can access it

without creating an object of the outer class:

class Outer

{

 static class StaticNestedClass

 {

 void innerClassMethod()

 {

 System.out.println("from static Nested class");

 }

 }

 public static void main(String args[])

 {

 Outer.StaticNestedClass obj2 = new Outer.StaticNestedClass();

 obj2.innerClassMethod();

 }

}

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

Note : inner classes can access attributes and methods of the outer class

Inner Class:

A non-static class created within class and outside all methods

class Outer
{
 class InnerClass
 {
 void innerClassMethod()
 {
 System.out.println("from Inner class");
 }
 }

 public static void main(String args[])
 {
 Outer obj1 = new Outer();
 Outer.InnerClass obj2 = obj1.new InnerClass();
 obj2.innerClassMethod();
 }
}

Note: To create an object for inner class, We must create object for outer class first.

OuterClass.InnerClass ref= outerClassObject.new InnerClass();

Method Local Inner Class:

An inner class can be defined with in a method, just like local variables, the scope of

the inner class is within the method. A method-local inner class can be instantiated only within

the method.

class Outer
{
 void outerClassMethod()
 {
 class Inner
 {
 void innerClassMethod()
 {
 System.out.println("from method local inner class");
 }
 }
 Inner obj2 = new Inner();
 obj2.innerClassMethod();
 }
 public static void main(String args[])
 {
 Outer obj1 = new Outer();
 obj1.outerClassMethod();
 }
}

mailto:umashankar.5544@gmail.com

umashankar.5544@gmail.com

Anonymous InnerClass

 Anonymous classes are declared at the time of instantiation/object creation. An inner class

is declared without a class name that’s why known to be anonymous inner class. Anonymous

classes are mostly used to override methods of interfaces.

class Outer
{
 void display()
 {
 System.out.println("from outer class method");
 }
 public static void main(String args[])
 {
 Outer obj1 = new Outer();
 obj1.display();

 Outer obj2 = new Outer()
 {
 void display()
 {
 System.out.println("from anonymous inner class");
 }
 };
 obj2.display();
 }
}

mailto:umashankar.5544@gmail.com

Inheritance: Access Control, Introduction to Inheritance, Types of Inheritance, Using super,

Method Overriding and Dynamic Method Dispatch, Using final, Abstract Classes.

Interfaces: Defining and Implementing Interfaces.

Packages: Creating Packages, Importing Packages, Importance of CLASSPATH.

Exception Handling, Importance of try, catch, throw, throws and finally Block.

Inheritance:

Inheritance is the process of acquiring properties (data members) and

functionalities(methods) of one class to another class. It is an important principle of object-oriented

programming. Inheritance helps for code reusability.

‘extends is the keyword in java to inherit one class functionality to another’

class B extends A

here all the properties and functions under class A will be inherited to class B. Along with the

inherited, class B can have its own additional properties and functions.

here, class A is called parent class and class B is called child class.

Parent Class:

The class whose properties and functionalities are used(inherited) by another class is known as

parent class, super class or Base class.

Child Class:

The class that extends the features of parent class is known as child class, sub class or derived class.

Define a class called calculator, given a two integer values it should perform

i) addition

ii) subtraction

iii) multiplication.

import java.util.Scanner;
class Caliculator
{
 int a, b;
 public void add(int i, int j)
 {
 int sum = i+j;
 System.out.println("addition is "+ sum);
 }
 public void substraction(int i, int j)
 {
 int difference = i-j;
 System.out.println("substraction is "+ difference);
 }
 public void multiply(int i, int j)
 {
 int multiple = i*j;

 System.out.println("mulitplication is "+ multiple);
 }
 public static void main(String args[])
 {
 Caliculator obj = new Caliculator();
 Scanner sc = new Scanner(System.in);
 System.out.print("Enter value for a: ");
 obj.a =sc.nextInt();
 System.out.print("Enter value for b: ");
 obj.b =sc.nextInt();

 // perform caliculator operations in these two values
 obj.add(obj.a, obj.b);
 obj.substraction(obj.a, obj.b);
 obj.multiply(obj.a, obj.b);
 }
}

OuPut:

C:\Users\UMA SHANKAR\Desktop>javac Caliculator.java

C:\Users\UMA SHANKAR\Desktop>java Caliculator
Enter value for a: 8
Enter value for b: 6
addition is 14
substraction is 2
mulitplication is 48

Define a class called ScientificCalculator, given a two integer values it should perform

i) addition

ii) subtraction

iii) multiplication.

iv) power of

v) modulus

vi) division

we have already written first three operations in class Calculator why to write that code again in

class ScientificCaliculator ? can’t we reuse that code ?

‘Yes’ extend class Calculator in class ScientificCalculator by which it acquires instance variables a,b

and three functionalities add, subtraction and multiply.

import java.util.*;
class ScientificCaliculator extends Caliculator
{
 public static void main(String args[])
 {
 ScientificCaliculator ob = new ScientificCaliculator();
 Scanner sc = new Scanner(System.in);
 System.out.print("Enter value for a: ");

 ob.a = sc.nextInt();
 System.out.print("Enter value for a: ");
 ob.b = sc.nextInt();
 // perform all operations
 ob.add(ob.a, ob.b);
 ob.substraction(ob.a, ob.b);
 ob.multiply(ob.a, ob.b);
 ob.power(ob.a, ob.b);
 ob.modulus(ob.a, ob.b);
 ob.division(ob.a, ob.b);
 }
 public void power(int i, int j)
 {
 double sqr = Math.pow(i,j);
 System.out.println("power is "+ sqr);
 }
 public void modulus(int i, int j)
 {
 int mod = i%j;
 System.out.println("modulus is "+ mod);
 }
 public void division(int i, int j)
 {
 double div = i/j;
 System.out.println("division is "+div);
 }
}
OutPut:
C:\Users\UMA SHANKAR\Desktop>java ScientificCaliculator
Enter value for a: 3
Enter value for a: 2
addition is 5
substraction is 1
mulitplication is 6
power is 9.0
modulus is 1
division is 1.0

Types of Inheritance:

Single Inheritance:

In Single Inheritance, there will be only two classes, and one class extends another class.

Example
Class A
{
 public void methodA()
 {
 System.out.println("methodA of class A");
 }
}

Class B extends A
{
 public void methodB()
 {
 System.out.println("methodB of class B");
 }
 public static void main(String args[])
 {
 B obj = new B();
 obj.methodA(); //calling super class method
 obj.methodB(); //calling local method
 }
}

OutPut
methodA of class A
methodB of class B

Multilevel inheritance:

In Multilevel Inheritance, a class inherits from a derived class. Hence, the derived class
becomes the base class for the new class. refer the diagram.

Hierarchical Inheritance:

In Hierarchical Inheritance, one class is inherited by many sub classes.

* Java doesn’t support following two types of inheritances

Multiple Inheritance:

In Multiple Inheritance, a class will extend more than one class. Java does not support
multiple inheritance.

Hybrid Inheritance:
Hybrid inheritance is a combination of Hierarchical and Multiple inheritance.

To reduce the complexity and simplify the language, multiple inheritance is not

supported in java.

Consider a scenario where A, B, and C are three classes. The C class inherits A and B

classes. If A and B classes have the same method and you call it from child class object,

there will be ambiguity to call which method either of class A or B.

Java raises compile-time error if you try to inherit 2 classes. So, whether you

have same method or different, there will be compile time error.

Method Overriding:

If subclass (child class) has the same method as declared in the parent class,

then the function is said to be overridden in child class. When we create on object and

Class A Class B

Class C

child class

Parent class 2 Parent class 1

try to invoke the method with same name, method from child class will be invoked. It is

also called as dynamic polymorphism.

write a program to explain how method overriding takes place

between parent and child class

class Parent
{
 void display()
 {
 System.out.println("method display of class Parent");
 }
}

public class Child extends Parent
{
 void display()
 {
 System.out.println("method display of class Child");
 }
 public static void main(String args[])
 {
 Child ch = new Child();
 ch.display(); // calls child display method
 }
}

OUTPUT:

method display of class Child

Note: When we want to access parent class overridden functions we can do, using super.

super Keyword:

 The super keyword in java is a reference variable that is used to refer parent class
objects. when a derived class and base class have members (either instance variables or
functions) with same name. JVM will always pick child class member to execute. In such a
scenario If we want to access parent class member’s we can use super reference in child
class to refer parent class members.

1. super can be used to refer immediate parent class instance variable.

2. super can be used to invoke immediate parent class method.

3. super() can be used to invoke immediate parent class constructor.

1. Write program to explain accessing parent class instance
overridden(variable with same name in parent and child class) variable from
child class.

class Parent
{
//parent class instance variable
 int var=54;
}

public class Child extends Parent
{
//child class instance variable
 int var=74;
 public static void main(String[] args)
 {
 Child obj = new Child();
 obj.display();
 }
 void display()
 {
 System.out.println(var); //refers child class var
 System.out.println(super.var); // refers parent class var
 }

}
OUTPUT:

74
54

2. Write program to explain accessing parent class overridden method
(method with same name in parent and child class) from child class.

class Parent
{
//parent class print method
 void print()
 {
 System.out.println("print method of parent class");
 }
}

public class Child extends Parent
{

 public static void main(String[] args)
 {
 Child obj = new Child();
 obj.display();
 }

 void display()
 {
 print(); // executes child class print method
 super.print(); // executed parent class print method
 }
//child class print method
 void print()
 {
 System.out.println("print method of child class");
 }

}

OUTPUT:
print method of child class
print method of parent class

3. Write a program to invoke parent class no argument constructor
from child class using super

class Parent
{
//parent class constructor
 Parent()
 {

System.out.println("no argument constructor of parent
class");

 }
}

public class Child extends Parent
{
//child class constructor
 Child()
 {
 super(); // calls parent class no argument constructor

 System.out.println("no argument constructor of child
class");

 }
 public static void main(String[] args)
 {
 Child obj = new Child(); // calls child class constructor
 }
}

OUTPUT:

no argument constructor of parent class
no argument constructor of child class

4. Write a program to invoke parent class constructor with arguments
from child class using super

class Parent
{
//parent class constructor
 int a,b;
 Parent()
 {

System.out.println("parent class constructor with out
arguments");

 }
 Parent(int i, int j)
 {
 a = i;
 b = j;
 System.out.println("parent class instance variables are

initialized");
 System.out.println("a = "+a+" b = "+b);
 }
}

public class Child extends Parent
{
//child class constructor
 Child()
 {
 super(5,4); //calls parent class constructor with arguments
 System.out.println("If we use super it should be first

statement in constructor");
 }
 public static void main(String[] args)
 {
 Child obj = new Child(); // calls child class constructor
 }
}

OUTPUT:

parent class instance variables are initialized

a = 5 b = 4

If we use super it should be first statement in constructor.

Final keyword:

The final keyword in java is used to restrict the access to parent class variables

and methods, and even to prevent the class from being inherited.

A Final can be applied for variables, methods, and class.

Java final variable

If you make any variable as final, you cannot change the value of final variable(It

will be constant).

Write a program using final variable, after initializing it with a value. try to

update the variable again. mention the compile time error that occurs while

modifying final variable.

class Parent
{
 final int i =65;
 void display()
 {
 i = 60;
 System.out.println(i);
 System.out.println("method display of class Parent");
 }
 public static void main(String args[])
 {
 Parent ob = new Parent();
 ob.display();
 }

}

Error :

java:6: error: cannot assign a value to final variable i

 i = 60;

Write a program, with method declared final and try to override that in child class.

mention compile time error while you do that.

Note : we cannot override a final method in child class

class Parent
{
 final void display()
 {

System.out.println("This method cannot be overriden in
child class");

 }
}

public class Child extends Parent
{
 int i = 80;
 void display()
 {

System.out.println("this will not executed, as we cannot
override final method");

 }
 public static void main(String args[])
 {
 Child ch = new Child();
 ch.display(); // calls child display method
 }
}

Error:

Child.java:13: error: display() in Child cannot override display() in Parent
 void display()
 ^
 overridden method is final
1 error

Write a program to extend a class that is final, mention the error while you obtain while

implementing that

Note: We cannot extend a final class.

final class Parent
{
 final void display()
 {
 System.out.println("This method cannot be overriden in

child class");
 }
}

public class Child extends Parent
{
 public static void main(String args[])
 {
 Child ch = new Child();
 }

}

Child.java:9: error: cannot inherit from final Parent
public class Child extends Parent
 ^
1 error

Abstract classes

Abstarct method: A method which is declared as abstract and does not have

implementation is known as an abstract method.

abstract void printStatus(); // no functionality will be defined when declared abstract.

Abstract class:

 A class which is declared abstract, is known as an abstract class. It can have both

abstract and non-abstract methods.

1. An abstract class must be declared with an abstract keyword.

2. It can have abstract and non-abstract methods.

3. object cannot be created for abstract classes.

4. It can have constructors and static methods.

5. It can have final methods which will force the subclass not to change the body of

the method.

NOTE : To use the abstract class we must extend the abstract class, and need to

define the functionality for its abstract methods and we can use the inherited non

abstract methods of it.

Write a program explaining how to use abstract and non-abstract methods of

an abstract class.

abstract class Parent
{
 void method1()
 {

System.out.println("this is a non abstract method class
Parent");

 }
// abstract methods will not have any functionality
 abstract int method2(int a, int b);
}
class Child extends Parent
{
 public static void main(String args[])
 {
 Child ob = new Child();
 ob.method1();
 int sum = ob.method2(8,9);
 System.out.println("sum of two values is "+sum);
 }
 int method2(int i, int j)
 {
 return i+j;
 }

}

https://www.javatpoint.com/java-constructor

OUTPUT:

this is a non abstract method class Parent
sum of two values is 17

Note : If we extend an abstract class, we must implement all the abstract methods of the parent abstract class.

otherwise we should declare implementing class also as abstract.

Interfaces:

An interface is a class declared by keyword interface, in interface all the methods will be

abstract.

1. You cannot instantiate an interface.

2. An interface does not contain any constructors.

3. All of the methods in an interface are abstract.

4. An interface cannot contain instance fields. The only fields that can appear in an interface
must be declared both static and final.

5. An interface is not extended by a class, it is implemented by a class.

6. An interface can extend multiple interfaces.

Interface declaration

 interface interfaceName

{

 method declaration // abstract, by default

}

Note:

1. An interface is implicitly abstract. You do not need to use the abstract keyword while
declaring an interface.

2. Each method in an interface is also implicitly abstract, so the abstract keyword is not
needed.

3. Methods in an interface are implicitly public

Define an interface which specifies there should be functions called sum and multiply
that accepts two integer numbers and returns sum and multiplication values respectively.
also write a class to implement that interface.

interface InterfaceOne
{
 int sum(int a, int b);
 int multiply(int i, int j);
}

class Impl implements InterfaceOne
{
 public int sum(int a1, int a2)
 {
 int sum;
 sum = a1+a2;
 return sum;
 }
 public int multiply(int b1, int b2)

 {
 int mul;
 mul = b1 * b2;
 return mul;
 }
 public static void main(String args[])
 {
 Impl obj = new Impl();
 int r1 = obj.sum(2,4);
 System.out.println("sum of values is "+r1);
 int r2 = obj.multiply(3, 4);
 System.out.println("multiplication of values is "+r2);
 }
}

OUTPUT:

sum of values is 6
multiplication of values is 12

NOTE:

1. A class can implement more than one interface at a time.

2. A class can extend only one class, but implement many interfaces.

Extending Interfaces

An interface can extend another interface in the same way that a class can extend another
class. The extends keyword is used to extend an interface, and the child interface inherits the
methods(abstract) of the parent interface.

Packages:

packages in Java are used to group related classes together. name conflicts can also be
resolved using packages and helps in maintaining readability of code. Java uses file system
directory for packages.

Types of packages:

1. Built in packages

2. user defined packages

Built in packages

classes which are a part of Java API, are called built in packages.

example: java.lang, java.io, java.util, etc,.

User-defined packages -These are the packages defined by the user.

creating a package:

First, we create a folder say, myPackage (name should be same as the name of the
package we want create). Then create any class say, MyClass inside that directory. The
first statement should be package packagename.

create a class A under package firstpackage, In class A write a print statement in
display method as “first program on packages”

First create a directory called firstpackage (create a folder and name it as package
name-firstpackage). The first statement in any java file under this package should be

package firstpackage;

package firstpackage;
class A
{
 public static void main(String args[])

{
 display();
}

 public void display()
 {
 System.out.println("first program on packages");

}
}

compile
E:\MyApp\src>javac firstpackage/A.java

Note: compile the program from root folder

write a program with class B, in package secondpackage. import class A into B and
execute display method of A.

package secondpackage; //class B belongs to second package

import firstpackage.A; // importing class A from firstpackage
class B
{
 public static void main(String args[])

{
 A obj = new A();

obj.display();
}

}

E:\MyApp\src>javac secondpackage/B.java

There are three ways to access the package from outside the package.

1. import package.*;

example: import firstpackage.* (all classes inside this package will be imported)

2. import package.classname;

import firstpackage.A;

3. fully qualified name.

wherever we access class A, access it through firstpackage.A;

subpackages:

we can create packages inside a package known as sub packages.

package firstpackage.p1;

public class inner {

 public void display()
 {
 System.out.println("from method display inner class");
 }
}

E:\MyApp\src>javac firstpackage/p1/inner.java

here the first statement package firstpackage.p1;

represents class ‘inner’ belongs to package p1, where p1 is a sub package of firstpackage.

If we want to access this class inner in any other package, we need to import from root
package. i.e., import package2.p1.inner observe the following program

package package3; //MyClass belongs to package3

import package2.p1.inner; //importing class inner

public class MyClass {

 public void display1()
 {
 System.out.println("display of MyClass in package3");
 }
 public static void main(String[] args) {
 // TODO Auto-generated method stub
 inner obj = new inner();
 obj.display();
 }

}

E:\MyApp\src>javac package3/MyClass.java

Executing MyClass

E:\MyApp\src>java package3.MyClass

OUTPUT:

from method display inner class

Here package package3; statement represents MyClass belongs to package3

second statement import package2.p1.inner represents we import the class inner.

Access Control / Access modifiers

The access modifiers in Java specifies the accessibility or scope of a field,

method, constructor, or class. We can change the access level of fields, constructors,

methods, and class by applying the access modifier on it.

1. Private: The access level of a private modifier is only within the class. It cannot

be accessed from outside the class.

2. Default: The access level of a default modifier is only within the package. It

cannot be accessed from outside the package. If you do not specify any access

level, it will be the default.

3. Protected: The access level of a protected modifier is within the package and

outside the package through child class. If you do not make the child class, it

cannot be accessed from outside the package.

4. Public: The access level of a public modifier is everywhere. It can be accessed

from within the class, outside the class, within the package and outside the

package.

CLASSPATH:

CLASSPATH is an environment variable in Java, and tells Java applications and

the Java Virtual Machine (JVM) where to find the classes that we use in the program.

setting class path from command prompt

Example:

SET CLASSPATH=%CLASSPATH%;H:\javaprogram

Write a program to explain how classes existing in classpath location can be

used directly without importing.

class MyProgram
{
 public void display()
 {

System.out.println("from display method of class
myprogram");

 }
}

This java file exists in the following path

H:\javaprogram

If we access this class MyProgram from another directory, generally we need to import.

but if the path of class MyProgram is given in classpath variable JVM can load the class

by checking locations specified in classpath and can able to load and execute.

public class ClassPathExample {

 public static void main(String[] args) {
 // TODO Auto-generated method stub
 MyProgram obj = new MyProgram();
 obj.display();
 }

}

the above ClassPathExample, uses MyProgram class and calling it’s method display

without importing. If classpath is not set with the location of MyProgram, JVM will not be

able to fetch and load this MyProgram class and results in following error.

F:\example>javac ClassPathExample.java

ClassPathExample.java:6: error: cannot find symbol

 MyProgram obj = new MyProgram();

 ^

 symbol: class MyProgram

 location: class ClassPathExample

after setting classpath using command prompt, as

F:\example>SET CLASSPATH=%CLASSPATH%;H:\javaprogram

(or)

setting classpath variable, with values as location of MyProgram class

JVM will not raise any error, now JVM can load the MyProgram class file by checking out

the location specified in classpath variable

F:\example>javac ClassPathExample.java

F:\example>java ClassPathExample

OUTPUT:

from display method of class myprogram

Exceptions

Exception in Java is an event that interrupts the execution of program-instructions and

terminates the execution abnormally.

why we need exception handling

Exception handling ensures that the flow of the program doesn’t break when an

exception occurs. For example, if a program has large no of statements and an exception

occurs in middle after executing certain statements then the statements after the

exception will not be executed and the program will terminate abruptly. By handling we

make sure that all the statements execute and the flow of program doesn’t break.

Exceptions are mainly categorized into

• Checked Exceptions

• unchecked Exceptions

Checked exceptions/Compile time exceptions − A checked exception is an compile

time exception that will be checked by the compiler. These exceptions cannot simply be

ignored, the programmer should take care of (handle) these exceptions.

Example - FileNotFoundException

Unchecked exceptions/Runtime Exceptions − An unchecked exception is an exception
that occurs at the time of execution. Runtime exceptions will not be checked by the compiler.
It is the programmer responsibility to handle these exceptions.

Example – ArithmeticException, ArrayIndexOutOfBoundsException

Note : Errors doesn’t come under the category of Exceptions

Errors can be categorized to

1. Compile time errors – Any syntax or semantic error in a program

example –

flt a; -> instead of float a;

a = b+c , missing semicolon

2. Runtime errors

Erros / Runtime errors – Errors are the conditions from which application cannot get

recovered by any handling techniques. It will cause termination of the program

abnormally. Errors occur at runtime.

example:

StackOverflowError

 UnSupportedClassVersionError

 VirtualMachineError

Java provides exception handling with five keywords:

try, catch, throw, throws, and finally.

try block

Program statements that can raise exceptions should be written within a try

block. If an exception occurs within the try block, it is thrown to corresponding catch

block.

catch block

We can catch the exception raised in try and handle the flow of control with out

letting it to terminate abruptly because of exception. We can provide any useful

information to user regarding the exception.

A try block can be followed by multiple catch blocks.

throw

We can throw the exceptions manually either predefined or user defined, by using

the keyword throw.

throws

When an exception causing method wants to return the Exception to its calling

method it can be thrown by a throws clause and calling method should handle this

exception.

finally

 The finally block follows a try block or a catch block. A finally block of code always

executes, irrespective of occurrence of an Exception. Using a finally block allows you to

run any clean up statements that you want to execute like closing files, session or

network connections

Example :

consider the following statement which leads to – ArithmeticException -divide by zero

Exception

int res = a/b; // There is chance of getting Exception

Handling the exception

try {

 int res = a/b ;

}

catch(ArithmeticException e)

{

 System.out.println(“Exception caught : ”+e);

}

finally

{

System.out.println(“statements under finally will always be executed even when

exception is not raised”);

}

user defined Exceptions/ custom exceptions

User Defined Exception or custom exception is creating your own exception

class and raising that exception using ‘throw’ keyword. custom exception class

can be created by extending the class Exception.

In the below example problem when amount required to with drawl exceeds the

balance we are going to raise a user define exception called

OutOfBalanceException

class Main
{
 public static void main(String args[])
 {
 Operations obj = new Operations();
 try {
 obj.withdrawl(20000);
 }
 catch(OutOfBalanceException e)
 {
 System.out.println(e);
 }
 }
}
class OutOfBalanceException extends Exception
{
 public String toString()
 {
 return "insufficient funds can not perform withdrawl";
 }

}
class Operations
{
 static int balance = 10000;
 void withdrawl(int req)throws OutOfBalanceException
 {
 if(balance < req)
 {
 throw new OutOfBalanceException();
 }
 else
 {
 balance = balance - req;
 }
 }
}

To raise the user defined exception we an can use throw keyword

throw new OutOfBalanceException();

here the raised exception is transferred to the caller method using

throws keyword, the exception should be handled there

try {
 obj.withdrawl(20000);
}

void withdrawl(int req)throws OutOfBalanceException

{

 throw new OutOfBalanceException();

}

Using parent Exception class reference for child class

Exception

In this example, we generate ArithmeticException, but the catch block with corresponding

exception type is not defined. In such case, the catch block containing the parent exception

class Exception will executed.

public class CatchParentExceptionClass {

 public static void main(String[] args) {

 try{
 int res = 24/0;
 System.out.println(res);
 }
 catch(NullPointerException e)
 {
 System.out.println("Arithmetic Exception

occurs");
 }
 catch(ArrayIndexOutOfBoundsException e)
 {

 System.out.println("ArrayIndexOutOfBounds
Exception occurs");

 }
 catch(Exception e)
 {
 System.out.println("Parent Exception class

matched");
 }
 System.out.println("rest of the code");
 }
}

output : Parent Exception class matched

UNIT-IV

Multithreading and Files: Introduction, Thread Lifecycle, Creation of Threads, Thread Priorities,

Thread Synchronization, Communication between Threads. Reading Data from Files and Writing

Data to Files, Random Access Files

Multithreading is a process of executing multiple threads simultaneously.

A Thread is a light weight process, a smallest unit of processing. Multithreading helps to increase

the throughput. In multithreading, the threads will share a common memory area so the context

switching between the threads will take less time

Advantages of Java Multithreading

1) The users are not blocked because threads are independent, and we can perform multiple

operations at same time

2) As such the threads are independent, the other threads won't get affected if one thread meets an

exception.

Threads can be created in two ways:

1. Extending the Thread class

2. Implementing the Runnable Interface

Life cycle of a Thread (Thread States)

The life cycle of thread consists of 5 different states.

1. New

2. Runnable

3. Running

4. Non-Runnable (Blocked)

5. Terminated

1. New: A thread is said to be in new state, if you create an instance of Thread class and start() method

is not yet invoked.

2. Runnable: In this stage, the instance of the thread is invoked with a start method. The thread

control is given to scheduler to finish the execution. It depends on the scheduler, when to run the thread.

3. Running: When the thread starts executing, then the state is changed to "running" state. The

scheduler selects one thread from the thread pool, and it starts executing.

4. Blocked/Non Runnable : thread is considered to be in the blocked state when it is suspended,

sleeping, or waiting for some time in order to satisfy some condition.

5. Terminated: This is the state when the thread is terminated. When the thread completes execution

of its “run” method, it goes into the “terminated” state.

Creating Threads

1. Creating Thread by extending the Thread class

 We should create a class by extending the java.lang.Thread class. This class overrides the

run() method available in the Thread class. A thread begins its life inside run() method. We create an

object of our new class and call start() method to start the execution of a thread. Start() invokes the

run() method on the Thread object.

Example :

Java Thread Example by extending Thread class

class ThreadExample extends Thread

{

public void run()

{

System.out.println("thread is running...");

}

public static void main(String args[])
{

ThreadExample t1=new ThreadExample ();
t1.start();

}

}

Constructors of Thread class:

1. Thread()

2. Thread(String name)

3. Thread(Runnable r)

4. Thread(Runnable r, String name)

methods of Thread class:

1. public void start(): starts the execution of the thread.JVM calls the run() method on the thread.

2. public void run(): is used to perform action for a thread.

3. public void sleep(long miliseconds): Causes the currently executing thread to sleep (temporarily

cease execution) for the specified number of milliseconds.

4. public void join(): waits for a thread to die.

5. public void join(long milliseconds): waits for a thread to die for the specified milliseconds.

6. public int getPriority(): returns the priority of the thread.

7. public int setPriority(int priority): changes the priority of the thread.

8. public String getName(): returns the name of the thread.

9. public void setName(String name): changes the name of the thread.

10. public Thread currentThread(): returns the reference of currently executing thread.

11. public int getId(): returns the id of the thread.

12. public Thread.State getState(): returns the state of the thread.

13. public boolean isAlive(): tests if the thread is alive.

14. public boolean isDaemon(): tests if the thread is a daemon thread.

15. public void setDaemon(boolean b): marks the thread as daemon or user thread.

16. public void interrupt(): interrupts the thread.

17. public boolean isInterrupted(): tests if the thread has been interrupted.

18. public void suspend(): is used to suspend the thread(depricated).

19. public void resume(): is used to resume the suspended thread(depricated).

20. public void stop(): is used to stop the thread(depricated).

21. public void yield(): causes the currently executing thread object to temporarily pause and allow

other threads to execute.

2. Creating Thread by implementing Runnable interface:

Threads can also be created by implementing the Runnable interface. Runnable interface have

only one method named run(), with the help of Runnable interface the class can work as thread and

also we can extend any other class

public void run(): is used to perform action for a thread.

following are the steps to create a new thread using the Runnable interface:

1. The first step is to create a Java class that implements the Runnable interface.

2. The second step is to override the run() method of the Runnable() interface in the class.

3. Now, pass the Runnable object as a parameter to the constructor of the Thread class

4. Finally, invoke the start method of the Thread object.

Example:

class RunnableThread implements Runnable

{

public void run()

{

System.out.println("thread created using Runnable Interface");

}

public static void main(String args[])
{

RunnableThread m1=new RunnableThread ();
RunnableThread t1 =new RunnableThread (m1);

t1.start();

}

}

Priority of a Thread (Thread Priority):

Each thread will have a priority. Priorities are represented by a number between 1, 5 and 10. In most

cases, thread schedular schedules the threads according to their priority (known as preemptive

scheduling). But it is not guaranteed because it depends on JVM specification that which scheduling it

chooses.

constants defined in Thread class for Priorities:

1. public static int MIN_PRIORITY - 1

2. public static int NORM_PRIORITY - 5

3. public static int MAX_PRIORITY - 10

Default priority of a thread is 5 (NORM_PRIORITY). The value of MIN_PRIORITY is 1 and the

value of MAX_PRIORITY is 10.

Example for priority of a Thread:

class ExamplePriority extends Thread

{

public void run()

{

System.out.println("running thread name is:"+Thread.currentThread().getName());

System.out.println("running thread priority is:"+Thread.currentThread().getPriority());

}

public static void main(String args[])

{

ExamplePriority m1=new ExamplePriority ();

ExamplePriority m2=new ExamplePriority ();

m1.setPriority(Thread.MIN_PRIORITY);

m2.setPriority(Thread.MAX_PRIORITY);

m1.start();

m2.start();

}

}

Output:

running thread name is:Thread-0

running thread priority is:10

running thread name is:Thread-1

running thread priority is:1

Thread Scheduler in Java:
Thread scheduler in java is the part of the JVM that decides which thread should run. There is

no guarantee that which runnable thread will be chosen to run by the thread scheduler. Only one thread at

a time can run in a single process. The thread scheduler mainly uses preemptive or time slicing

scheduling to schedule the threads.

Java Synchronization

Synchronization is a process of handling resource accessibility by multiple thread requests. The

main purpose of synchronization is to avoid thread interference. At times when more than one thread try to

access a shared resource, we need to ensure that resource will be used by only one thread at a time. The

process by which this is achieved is called synchronization. The synchronization keyword in java creates a

block of code referred to as critical section.

The synchronization is mainly used to

1. To prevent thread interference.

2. To prevent inconsistency problem.

Thread Synchronization

thread synchronization can be done with the help of

 Synchronized method.

 Synchronized block.

 Static synchronization.

Concept of Lock in Java

Synchronization is built around an internal entity known as the lock or monitor. Every object

has a lock associated with it. By convention, a thread that needs consistent access to an object's

fields has to acquire the object's lock before accessing them, and then release the lock when it's done

with them.

Understanding the problem without Synchronization

class Table{

void printTable(int n){//method not synchronized

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 }

}

}

class MyThread1 extends Thread{

Table t;

MyThread1(Table t){

this.t=t;

}

public void run(){

t.printTable(5);

}

}

class MyThread2 extends Thread{

Table t;

MyThread2(Table t){

this.t=t;

}

public void run(){

t.printTable(100);

} }

class TestSynchronization1{

public static void main(String args[]){

Table obj = new Table();//only one object

MyThread1 t1=new MyThread1(obj);

MyThread2 t2=new MyThread2(obj);

t1.start();

t2.start();

}

}

Java synchronized method

If you declare any method as synchronized, it is known as synchronized method.

Synchronized method is used to lock an object for any shared resource. When a thread invokes a

synchronized method, it automatically acquires the lock for that object and releases it when the

thread completes its task.

//example of java synchronized method

class Table{

synchronized void printTable(int n){//synchronized method

 for(int i=1;i<=5;i++){

 System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){System.out.println(e);}

 }

}

}

Synchronized Block in Java

Synchronized block can be used to perform synchronization on any specific

resource of the method. Suppose you have 50 lines of code in your method, but you want to

synchronize only 5 lines, you can use synchronized block. If you put all the codes of the method in

the synchronized block, it will work same as the synchronized method. Points to remember for

Synchronized block

• Synchronized block is used to lock an object for any shared resource.

• Scope of synchronized block is smaller than the method.

Syntax to use synchronized block

synchronized (object reference expression) {

//code block

}

class Table{

void printTable(int n){

synchronized(this){//synchronized block

for(int i=1;i<=5;i++){

System.out.println(n*i);

try{

Thread.sleep(400);

}catch(Exception e){System.out.println(e);}

}

}

}//end of the method

}

Static Synchronization

If you make any static method as synchronized, the lock will be on the class not on object

Example of static synchronization
In this example we are applying synchronized keyword on the static method to

perform static synchronization.

class Table{

synchronized static void printTable(int n){

for(int i=1;i<=10;i++){

System.out.println(n*i);

 try{

 Thread.sleep(400);

 }catch(Exception e){}

 }

}

}

class MyThread1 extends Thread{

public void run(){

Table.printTable(1);

}

}

class MyThread2 extends Thread{

public void run(){

Table.printTable(10);

}

}

class MyThread3 extends Thread{

public void run(){

Table.printTable(100);

}

}

class MyThread4 extends Thread{

public void run(){

Table.printTable(1000);

}

}

public class TestSynchronization4{

public static void main(String t[]){

MyThread1 t1=new MyThread1();

MyThread2 t2=new MyThread2();

MyThread3 t3=new MyThread3();

MyThread4 t4=new MyThread4();

t1.start();

t2.start();

t3.start();

t4.start();

}

}

Deadlock in java
Deadlock in java is a part of multithreading. Deadlock can occur in a situation when a thread is

waiting for an object lock, that is acquired by another thread and second thread is waiting for an

object lock that is acquired by first thread. Since, both threads are waiting for each other to release

the lock, the condition is called deadlock.

Example of Deadlock in java
class TestDeadlockExample1 {

 public static void main(String[] args) {

 final String resource1 = "CSection";

 final String resource2 = "DSection";

 // t1 tries to lock resource1 then resource2

 Thread t1 = new Thread() {

 public void run() {

 synchronized (resource1) {

 System.out.println("Thread 1: locked resource 1");

 try { Thread.sleep(100);} catch (Exception e) {}

 synchronized (resource2) {

System.out.println("Thread 1: locked resource 2");

 }

 }

 }

 };

 // t2 tries to lock resource2 then resource1

 Thread t2 = new Thread() {

 public void run() {

 synchronized (resource2) {

 System.out.println("Thread 2: locked resource 2");

 try { Thread.sleep(100);} catch (Exception e) {}

 synchronized (resource1) {

 System.out.println("Thread 2: locked resource 1");

 }

 }

 }

 };

 t1.start();

 t2.start();

}

}

Output: Thread 1: locked resource

Inter-thread communication in Java

Inter-thread communication or Co-operation is all about allowing

synchronized threads to communicate with each other.

Cooperation (Inter-thread communication) is a mechanism in which a thread is

paused running in its critical section and another thread is allowed to enter (or

lock) in the same critical section to be executed.It is implemented by following

methods of Object class:

• wait()

• notify()

• notifyAll()

1) wait() method

Causes current thread to release the lock and wait until either another thread

invokes the notify() method or the notifyAll() method for this object, or a

specified amount of time has elapsed.

The current thread must own this object's monitor, so it must be called from the

synchronized method only otherwise it will throw exception.

Method Description

public final void wait()throws InterruptedException waits until object is notified.

public final void wait(long timeout)throws InterruptedException waits for the specified amount of

time

2) notify() method

Wakes up a single thread that is waiting on this object's monitor. If any threads are waiting on this

object, one of them is chosen to be awakened. The choice is arbitrary and occurs at the discretion

of the implementation.

Syntax: public final void notify()

3) notifyAll() method

Wakes up all threads that are waiting on this object's monitor.

Syntax:public final void notifyAll()

wait(), notify() and notifyAll() methods belongs to Thread class ?

No, they belong to Object class

Inter thread communication in java

class Customer{

int amount=10000;

synchronized void withdraw(int amount){

System.out.println("going to withdraw...");

if(this.amount<amount){

System.out.println("Less balance; waiting for deposit...");

try{wait();}catch(Exception e){}

}

this.amount-=amount;

System.out.println("withdraw completed...");

}

synchronized void deposit(int amount){

System.out.println("going to deposit...");

this.amount+=amount;

System.out.println("deposit completed... ");

notify();

}

}

class Test{

public static void main(String args[]){

final Customer c=new Customer();

new Thread(){

public void run(){c.withdraw(15000);}

}.start();

new Thread(){

public void run(){c.deposit(10000);}

}.start();

} }

Output: going to withdraw...

 Less balance; waiting for deposit...

 going to deposit...

 deposit completed...

 withdraw completed

Java I/O

• Java I/O (Input and Output) is used to process the input and produce the output.

• Java uses the concept of a stream to make I/O operation fast. The java.io package contains all the

classes required for input and output operations.

• We can perform file handling in Java by Java I/O API.

Stream

A stream is a sequence of data. In Java, a stream is composed of bytes. It's called a stream because it is

like a stream of water that continues to flow.

OutputStream vs InputStream

OutputStream

Java application uses an output stream to write data to a destination it may be a file, an array,

peripheral device or socket.

InputStream

Java application uses an input stream to read data from a source it may be a file, an array,

peripheral device or socket.

Let's understand the working of Java OutputStream and InputStream by the figure given below.

OutputStream class

OutputStream class is an abstract class. It is the superclass of all classes representing an output stream of bytes. An

output stream accepts output bytes and sends them to some sink.

Useful methods of OutputStream

Method Description

1) public void write(int)throws IOException is used to write a byte to the current output stream.

2) public void write(byte[])throws IOException is used to write an array of byte to the current output

stream.

3) public void flush()throws IOException flushes the current output stream.

4) public void close()throws IOException is used to close the current output stream.

InputStream class

InputStream class is an abstract class. It is the superclass of all classes representing an input stream of
bytes.

Useful methods of InputStream

Method Description

1) public abstract int read()throws IOException reads the next byte of data from the input stream. It

returns -1 at the end of the file.

2) public int available()throws IOException returns an estimate of the number of bytes that can be

read from the current input stream.

3) public void close()throws IOException is used to close the current input stream.

InputStream Hierarchy

Java FileOutputStream Class

➢ Java FileOutputStream is an output stream used for writing data to a file.

➢ If you have to write primitive values into a file, use

FileOutputStream class.

➢ You can write byte-oriented as well as character-oriented data through FileOutputStream

class.

➢ But, for character-oriented data, it is preferred to use FileWriter than FileOutputStream.

FileOutputStream class declaration

public class FileOutputStream extends OutputStream

FileOutputStream class methods

Java FileOutputStream Example 1: write byte

import java.io.FileOutputStream;

public class FileOutputStreamExample { public static

void main(String args[]){

try{

FileOutputStream fout=new FileOutputStream("D:\\testout.txt"); fout.write(65);

fout.close(); System.out.println("success...");

}catch(Exception e){System.out.println(e);}

}

}

Output:

Success...

void write(byte[] ary) It is used to write ary.length bytes from the byte array to the file

output stream.

void write(byte[] ary, int off, int

len)

It is used to write len bytes from the byte array starting at offset off

to the file output stream.

void write(int b) It is used to write the specified byte to the file output stream.

FileChannel getChannel() It is used to return the file channel object associated with the file

output stream.

FileDescriptor getFD() It is used to return the file descriptor associated with the stream.

void close() It is used to closes the file output stream.

Method Description

protected void finalize() It is used to clean up the connection with the file output stream.

https://www.javatpoint.com/array-in-java

The content of a text file testout.txt is set with the data A. A

Java FileOutputStream example 2: write string import

java.io.FileOutputStream;

public class FileOutputStreamExample { public static

void main(String args[]){

try{

FileOutputStream fout=new FileOutputStream("D:\\testout.txt"); String s="Welcome

to javaTpoint.";

byte b[]=s.getBytes();//converting string into byte array fout.write(b);

fout.close();

System.out.println("success...");

}catch(Exception e){System.out.println(e);}

}

}

Output:

Success...

The content of a text file testout.txt is set with the data Welcome to java. testout.txt

Welcome to java.

Java FileInputStream Class

➢ Java FileInputStream class obtains input bytes from a file.

➢ It is used for reading byte-oriented data (streams of raw bytes) such as image data, audio,

video etc.

➢ You can also read character-stream data.

➢ But, for reading streams of characters, it is recommended to use FileReader class.

Java FileInputStream class declaration

public class FileInputStream extends InputStream

Java FileInputStream class methods:

Method Description

int available() It is used to return the estimated number of bytes that can be read from the

input stream.

int read() It is used to read the byte of data from the input stream.

int read(byte[] b) It is used to read up to b.length bytes of data from the input stream.

int read(byte[] b, int off, int

len)

It is used to read up to len bytes of data from the input stream.

long skip(long x) It is used to skip over and discards x bytes of data from the input stream.

FileChannel getChannel() It is used to return the unique FileChannel object associated with the file

input stream.

FileDescriptor getFD() It is used to return the FileDescriptor object.

protected void finalize() It is used to ensure that the close method is call when there is no more

reference to the file input stream.

void close() It is used to closes the stream.

https://www.javatpoint.com/java-filedescriptor-class
https://www.javatpoint.com/java-8-stream

Java FileInputStream example 1: read single character

import java.io.FileInputStream; public class

DataStreamExample {

public static void main(String args[]){ try{

FileInputStream fin=new FileInputStream("D:\\testout.txt"); int i=fin.read();

System.out.print((char)i);

fin.close();

}catch(Exception e){System.out.println(e);}

}

}

Note: Before running the code, a text file named as "testout.txt" is required to be created. In this file, we are

having following content: Welcome to java

Welcome to java

After executing the above program, you will get a single character from the file which is 87 (in byte form). To see

the text, you need to convert it into character.

Output:

W

Java FileInputStream example 2: read all characters

import java.io.FileInputStream; public class

DataStreamExample {

public static void main(String args[]){ try{

FileInputStream fin=new FileInputStream("D:\\testout.txt"); int i=0;

while((i=fin.read())!=-1){

System.out.print((char)i);

}

fin.close();

}catch(Exception e){System.out.println(e);}

}

}

Output: Welcome to java

Java File Class

➢ The File class is an abstract representation of file and directory pathname.

➢ A pathname can be either absolute or relative.

➢ The File class have several methods for working with directories and files such as creating new directories or

files, deleting and renaming directories or files, listing the contents of a directory etc.

Java File Example 1

import java.io.*;

public class FileDemo {

public static void main(String[] args) {

try {

File file = new File("javaFile123.txt"); if

(file.createNewFile()) {

System.out.println("New File is created!");

} else {

System.out.println("File already exists.");

}

} catch (IOException e)

{

e.printStackTrace();

}

}

}

Output:

New File is created!

Java - RandomAccessFile

➢ This class is used for reading and writing to random access file.

➢ A random access file behaves like a large array of bytes.

➢ There is a cursor implied to the array called file pointer, by moving the cursor we do the read write

operations.

➢ If end-of-file is reached before the desired number of byte has been read than EOFException is thrown.

It is a type of IOException.

Method

Modifier

and Type

Method Method

void close() It closes this random access file stream and releases any

system resources associated with the stream.

FileChannel getChannel() It returns the unique FileChannel object

associated with this file.

int readInt() It reads a signed 32-bit integer from this file.

String readUTF() It reads in a string from this file.

void seek(long pos) It sets the file-pointer offset, measured from the

beginning of this file, at which the next read or write

occurs.

void writeDouble(double v) It converts the double argument to a long using the

doubleToLongBits method in class Double, and then

writes that long value to the file as an eight-byte quantity,

high byte first.

void writeFloat(float v) It converts the float argument to an int using the

floatToIntBits method in class Float, and then writes that

int value to the file as a four-byte quantity, high byte first.

void write(int b) It writes the specified byte to this file.

int read() It reads a byte of data from this file.

long length() It returns the length of this file.

void seek(long pos) It sets the file-pointer offset, measured from the beginning

of this file, at which the next read or write occurs.

https://www.javatpoint.com/data-transfer-between-channels

Example

import java.io.IOException; import

java.io.RandomAccessFile;

public class RandomAccessFileExample

{

static final String FILEPATH ="myFile.txt"; public

static void main(String[] args)

{ try {

System.out.println(new String(readFromFile(FILEPATH, 0, 18)));

writeToFile(FILEPATH, "I love my country and my people", 31);

 } catch (IOException e) { e.printStackTrace();

}

}

private static byte[] readFromFile(String filePath, int position, int size) throws

IOException {

RandomAccessFile file = new RandomAccessFile(filePath, "r");

file.seek(position);

byte[] bytes = new byte[size];

file.read(bytes);

file.close();

return bytes;

}

private static void writeToFile(String filePath, String data, int position) throws

IOException {

RandomAccessFile file = new RandomAccessFile(filePath, "rw");

file.seek(position);

file.write(data.getBytes());

file.close();

}

}

The myFile.TXT contains text "This class is used for reading and writing to random access file."

after running the program it will contains

This class is used for reading I love my country and my people.

1

UNIT-V

Java Applet

Applet is a special type of program that is embedded in the webpage to generate

the dynamic content. It runs inside the browser and works at client side.

Advantage of Applet

There are many advantages of applet. They are as follows:

 It works at client side so less response time.

 Secured

 It can be executed by browsers running under many plateforms, including

Linux, Windows, Mac Os etc.

Drawback of Applet

 Plugin is required at client browser to execute applet.

S.N

o

Course

Outcome

Intended Learning Outcomes

(ILO)

Knowledge

Level of

ILO

1

CO 5

Explain about applet class K2

2
Discuss about Applet Lifecycle K2

Discuss about AWT ,Components and

Containers of AWT

K2

Illustrate various AWT Controls like

Button,label,Checkbox, RadioButton,List

box, Menu and Scrollbar with example

programs

K3

Interpret different types of layout

managers with examples

K3

2

Hierarchy of Applet

Lifecycle of Java Applet

1. Applet is initialized.

2. Applet is started.

3. Applet is painted.

4. Applet is stopped.

5. Applet is destroyed.

3

Lifecycle methods for Applet:

The java.applet.Applet class 4 life cycle methods and java.awt.Component class

provides 1 life cycle methods for an applet.

java.applet.Applet class

For creating any applet java.applet.Applet class must be inherited.

 It provides 4 life cycle methods of applet

1. public void init(): is used to initialized the Applet. It is invoked only

once.

2. public void start(): is invoked after the init() method or browser is

maximized. It is used to start the Applet.

3. public void stop(): is used to stop the Applet. It is invoked when Applet is

stop or browser is minimized.

4. public void destroy(): is used to destroy the Applet. It is invoked only

once.

java.awt.Component class

The Component class provides 1 life cycle method of applet.

1. public void paint(Graphics g): is used to paint the Applet. It provides

Graphics class object that can be used for drawing oval, rectangle, arc etc.

How to run an Applet?

There are two ways to run an applet

1. By html file.

2. By appletViewer tool (for testing purpose).

Simple example of Applet by html file:

To execute the applet by html file, create an applet and compile it. After that

create an html file and place the applet code in html file. Now click the html

file.

4

//First.java

import java.applet.Applet;

import java.awt.Graphics;

public class First extends Applet

{

 public void paint(Graphics g)

 {

 g.drawString("welcome",150,150);

 }

}

Note: class must be public because its object is created by Java Plugin

software that resides on the browser.

myapplet.html

<html>

<body>

<applet code="First.class" width="300" height="300">

</applet>

</body>

</html>

Simple example of Applet by appletviewer tool:
To execute the applet by appletviewer tool, create an applet that contains applet

tag in comment and compile it. After that run it by: appletviewer First.java.

Now Html file is not required but it is for testing purpose only.

//First.java

import java.applet.Applet;

import java.awt.Graphics;

public class First extends Applet

{

 public void paint(Graphics g)

 {

 g.drawString("welcome to applet",150,150);

 }

}

/*

<applet code="First.class" width="300" height="300">

</applet>

*/

5

To execute the applet by appletviewer tool, write in command prompt:

c:\>javac First.java

c:\>appletviewer First.java

Displaying Graphics in Applet

java.awt.Graphics class provides many methods for graphics programming.

Commonly used methods of Graphics class:

 public abstract void drawString(String str, int x, int y): is used to

draw the specified string.

 public void drawRect(int x, int y, int width, int height): draws a

rectangle with the specified width and height.

 public abstract void fillRect(int x, int y, int width, int height): is used

to fill rectangle with the default color and specified width and height.

 public abstract void drawOval(int x, int y, int width, int height): is

used to draw oval with the specified width and height.

 public abstract void fillOval(int x, int y, int width, int height): is used

to fill oval with the default color and specified width and height.

 public abstract void drawLine(int x1, int y1, int x2, int y2): is used to

draw line between the points(x1, y1) and (x2, y2).

 public abstract boolean drawImage(Image img, int x, int y,

ImageObserver observer): is used draw the specified image.

 public abstract void drawArc(int x, int y, int width, int height, int

startAngle, int arcAngle): is used draw a circular or elliptical arc.

 public abstract void fillArc(int x, int y, int width, int height, int

startAngle, int arcAngle): is used to fill a circular or elliptical arc.

6

 public abstract void setColor(Color c): is used to set the graphics

current color to the specified color.

 public abstract void setFont(Font font): is used to set the graphics

current font to the specified font.

Example of Graphics in applet:

import java.applet.Applet;

import java.awt.*;

public class GraphicsDemo extends Applet

{

public void paint(Graphics g)

{

g.setColor(Color.red);

g.drawString("Welcome",50, 50);

g.drawLine(20,30,20,300);

g.drawRect(70,100,30,30);

g.fillRect(170,100,30,30);

g.drawOval(70,200,30,30);

g.setColor(Color.pink);

g.fillOval(170,200,30,30);

g.drawArc(90,150,30,30,30,270);

g.fillArc(270,150,30,30,0,180);

}

}

myapplet.html

<html>

<body>

<applet code="GraphicsDemo.class" width="300" height="300">

</applet>

</body>

</html>

7

Displaying Image in Applet
Applet is mostly used in games and animation. For this purpose image is

required to be displayed. The java.awt.Graphics class provide a method

drawImage() to display the image.

Syntax of drawImage() method:

public abstract boolean drawImage(Image img, int x, int y, ImageObserver

observer): is used draw the specified image.

How to get the object of Image:

The java.applet.Applet class provides getImage() method that returns the object

of Image. Syntax:

public Image getImage(URL u, String image){}

Other required methods of Applet class to display image:

public URL getDocumentBase(): is used to return the URL of the document in

which applet is embedded.

public URL getCodeBase(): is used to return the base URL.

Example of displaying image in applet:

import java.awt.*;

import java.applet.*;

public class DisplayImage extends Applet

{

 Image picture;

 public void init()

 {

 picture = getImage(getDocumentBase(),"img1.jpg");

 }

 public void paint(Graphics g)

 {

 g.drawImage(picture, 30,30, this);

 }

 }

8

In the above example, drawImage() method of Graphics class is used to display

the image. The 4th argument of drawImage() method of is ImageObserver

object. The Component class implements ImageObserver interface. So current

class object would also be treated as ImageObserver because Applet class

indirectly extends the Component class.

myapplet.html

<html>

<body>

<applet code="DisplayImage.class" width="300" height="300">

</applet>

</body>

</html>

Animation in Applet
Applet is mostly used in games and animation. For this purpose image is

required to be moved.

Example of animation in applet:

import java.awt.*;

import java.applet.*;

public class AnimationExample extends Applet

{

 Image picture;

 public void init()

 {

 picture =getImage(getDocumentBase(),"bike_1.gif");

 }

 public void paint(Graphics g)

 {

 for(int i=0;i<500;i++)

 {

 g.drawImage(picture, i,30, this);

 try{ Thread.sleep(100); } catch(Exception e){}

 }

 }

}

9

In the above example, drawImage() method of Graphics class is used to display

the image. The 4th argument of drawImage() method of is ImageObserver

object. The Component class implements ImageObserver interface. So current

class object would also be treated as ImageObserver because Applet class

indirectly extends the Component class.

myapplet.html

<html>

<body>

<applet code="AnimationExample.class" width="300" height="300">

</applet>

</body>

</html>

Java AWT

 Java AWT (Abstract Window Toolkit) is an API to develop GUI or

window-based applications in java.

 Java AWT components are platform-dependent i.e. components are

displayed according to the view of operating system. AWT is

heavyweight i.e. its components are using the resources of OS.

 The java.awt package provides classes for AWT api such as TextField,

Label, TextArea, RadioButton, CheckBox, Choice, List etc.

Java AWT Hierarchy

10

Container

The Container is a component in AWT that can contain another components

like buttons, textfields, labels etc. The classes that extends Container class are

known as container such as Frame, Dialog and Panel.

Window

The window is the container that has no borders and menu bars. You must use

frame, dialog or another window for creating a window.

Panel

The Panel is the container that doesn't contain title bar and menu bars. It can

have other components like button, textfield etc.

Frame

The Frame is the container that contain title bar and can have menu bars. It can

have other components like button, textfield etc.

Useful Methods of Component class:

Method Description

public void add(Component c) inserts a component on this component.

public void setSize(int width,int height) sets the size (width and height) of the

component.

public void setLayout(LayoutManager m) defines the layout manager for the component.

public void setVisible(boolean status) changes the visibility of the component, by

default false.

Java AWT Example

To create simple awt example, you need a frame. There are two ways to create a

frame in AWT.

 By extending Frame class (inheritance)

 By creating the object of Frame class (association)

11

AWT Example by Inheritance

Let's see a simple example of AWT where we are inheriting Frame class. Here,

we are showing Button component on the Frame.

import java.awt.*;

class First extends Frame

{

First()

{

Button b=new Button("click me");

b.setBounds(30,100,80,30);// setting button position

add(b);//adding button into frame

setSize(300,300);//frame size 300 width and 300 height

setLayout(null);//no layout manager

setVisible(true);//now frame will be visible, by default not visible

}

public static void main(String args[])

{

 First f=new First();

}

 }

The setBounds(int xaxis, int yaxis, int width, int height) method is used in the

above example that sets the position of the awt button.

AWT Example by Association:

Let's see a simple example of AWT where we are creating instance of Frame

class. Here, we are showing Button component on the Frame.

import java.awt.*;

class First2

{

First2()

 {

Frame f=new Frame();

Button b=new Button("click me");

b.setBounds(30,50,80,30);

f.add(b);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

 }

public static void main(String args[])

{ First2 f=new First2(); }}

12

Java AWT Button
The button class is used to create a labeled button that has platform

independent implementation. The application result in some action when the

button is pushed.

AWT Button Class declaration

public class Button extends Component

AWT Label Class Declaration
public class Label extends Component

Java Label Example

import java.awt.*;

class LabelExample

{

 public static void main(String args[])

 {

 Frame f= new Frame("Label Example");

 Label l1,l2;

 l1=new Label("First Label.");

 l1.setBounds(50,100, 100,30);

 l2=new Label("Second Label.");

 l2.setBounds(50,150, 100,30);

 f.add(l1); f.add(l2);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

}

13

Event and Listener (Java Event Handling)

 Changing the state of an object is known as an event.

 For example, click on button, dragging mouse etc.

 The java.awt.event package provides many event classes and Listener

interfaces for event handling.

Components of Event Handling
Event handling has three main components,

 Events:  An event is a change in state of an object.

 Events Source: An event source is an object that generates an event.

 Listeners:  A listener is an object that listens to the event. A listener

gets notified when an event occurs.

 Important Event Classes and Interface

Event Classes Description Listener Interface

ActionEvent
generated when button is pressed, menu-

item is selected, list-item is double clicked
ActionListener

MouseEvent

generated when mouse is dragged,

moved,clicked,pressed or released and also

when it enters or exits a component

MouseListener

KeyEvent
generated when input is received from

keyboard
KeyListener

14

Event Classes Description Listener Interface

ItemEvent
generated when check-box or list item is

clicked
ItemListener

TextEvent
generated when value of textarea or

textfield is changed
TextListener

MouseWheelEvent generated when mouse wheel is moved MouseWheelListener

WindowEvent

generated when window is activated,

deactivated, deiconified, iconified, opened

or closed

WindowListener

ComponentEvent
generated when component is hidden,

moved, resized or set visible
ComponentEventListener

ContainerEvent
generated when component is added or

removed from container
ContainerListener

15

Event Classes Description Listener Interface

AdjustmentEvent generated when scroll bar is manipulated AdjustmentListener

FocusEvent
generated when component gains or loses

keyboard focus
FocusListener

Steps to perform Event Handling:

 Register the component with the Listener

 Registration Methods

For registering the component with the Listener, many classes provide the

registration methods. For example:

 Button

o public void addActionListener(ActionListener a){}

 MenuItem

o public void addActionListener(ActionListener a){}

 TextField

o public void addActionListener(ActionListener a){}

o public void addTextListener(TextListener a){}

 TextArea

o public void addTextListener(TextListener a){}

 Checkbox

o public void addItemListener(ItemListener a){}

 Choice

o public void addItemListener(ItemListener a){}

 List

16

o public void addActionListener(ActionListener a){}

o public void addItemListener(ItemListener a){}

Java Event Handling Code

We can put the event handling code into one of the following places:

 Within class

 Other class

 Anonymous class

Java event handling by implementing ActionListener

import java.awt.*;

import java.awt.event.*;

class AEvent extends Frame implements ActionListener

{

TextField tf;

AEvent()

{

 //create components

tf=new TextField();

tf.setBounds(60,50,170,20);

Button b=new Button("click me");

b.setBounds(100,120,80,30);

//register listener

b.addActionListener(this);//passing current instance

//add components and set size, layout and visibility

add(b);add(tf);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public void actionPerformed(ActionEvent e)

{

 tf.setText("Welcome");

}

public static void main(String args[])

{

17

 new AEvent();

}

}

2) Java event handling by outer class
import java.awt.*;

import java.awt.event.*;

class AEvent2 extends Frame

{

TextField tf;

AEvent2()

{

//create components

tf=new TextField();

tf.setBounds(60,50,170,20);

Button b=new Button("click me");

b.setBounds(100,120,80,30);

//register listener

Outer o=new Outer(this);

b.addActionListener(o);//passing outer class instance

//add components and set size, layout and visibility

add(b);add(tf);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public static void main(String args[])

{

 new AEvent2();

}

}

import java.awt.event.*;

18

class Outer implements ActionListener

{

AEvent2 obj;

Outer(AEvent2 obj)

{

 this.obj=obj;

}

public void actionPerformed(ActionEvent e)

{

 obj.tf.setText("welcome");

}

}

3) Java event handling by anonymous class
import java.awt.*;

import java.awt.event.*;

class AEvent3 extends Frame

{

TextField tf;

AEvent3()

{

tf=new TextField();

tf.setBounds(60,50,170,20);

Button b=new Button("click me");

b.setBounds(50,120,80,30);

b.addActionListener(new ActionListener(){

public void actionPerformed()

{

tf.setText("hello");

}

});

add(b);add(tf);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public static void main(String args[])

{

new AEvent3();

}

}

19

Java WindowListener Interface
The Java WindowListener is notified whenever you change the state of window. It is notified

against WindowEvent. The WindowListener interface is found in java.awt.event package. It

has three methods.

Methods of WindowListener interface

The signature of 7 methods found in WindowListener interface are given below:

public abstract void windowActivated(WindowEvent e);

public abstract void windowClosed(WindowEvent e);

public abstract void windowClosing(WindowEvent e);

public abstract void windowDeactivated(WindowEvent e);

public abstract void windowDeiconified(WindowEvent e);

public abstract void windowIconified(WindowEvent e);

public abstract void windowOpened(WindowEvent e);

Java WindowListener Example

import java.awt.*;

import java.awt.event.WindowEvent;

import java.awt.event.WindowListener;

public class WindowExample extends Frame implements WindowListener{

 WindowExample(){

 addWindowListener(this);

 setSize(400,400);

 setLayout(null);

 setVisible(true);

 }

public static void main(String[] args) {

 new WindowExample();

}

public void windowActivated(WindowEvent arg0) {

 System.out.println("activated");

}

public void windowClosed(WindowEvent arg0) {

 System.out.println("closed");

}

public void windowClosing(WindowEvent arg0) {

 System.out.println("closing");

20

 dispose();

}

public void windowDeactivated(WindowEvent arg0) {

 System.out.println("deactivated");

}

public void windowDeiconified(WindowEvent arg0) {

 System.out.println("deiconified");

}

public void windowIconified(WindowEvent arg0) {

 System.out.println("iconified");

}

public void windowOpened(WindowEvent arg0) {

 System.out.println("opened");

}

}

Java ActionListener Interface
The Java ActionListener is notified whenever you click on the button or menu item. It is

notified against ActionEvent. The ActionListener interface is found in java.awt.event

package. It has only one method: actionPerformed().

actionPerformed() method

The actionPerformed() method is invoked automatically whenever you click on the registered

component.

public abstract void actionPerformed(ActionEvent e);

How to write ActionListener

The common approach is to implement the ActionListener. If you implement the

ActionListener class, you need to follow 3 steps:

1) Implement the ActionListener interface in the class:

 public class ActionListenerExample Implements ActionListener

2) Register the component with the Listener:

 component.addActionListener(instanceOfListenerclass);

3) Override the actionPerformed() method:

 public void actionPerformed(ActionEvent e)

 {

 //Write the code here

 }

21

Java MouseListener Interface
The Java MouseListener is notified whenever you change the state of mouse. It is notified

against MouseEvent. The MouseListener interface is found in java.awt.event package. It has

five methods.

Methods of MouseListener interface

The signature of 5 methods found in MouseListener interface are given below:

public abstract void mouseClicked(MouseEvent e);

public abstract void mouseEntered(MouseEvent e);

public abstract void mouseExited(MouseEvent e);

public abstract void mousePressed(MouseEvent e);

public abstract void mouseReleased(MouseEvent e);

Java MouseListener Example1

import java.awt.*;

import java.awt.event.*;

public class MouseListenerExample extends Frame implements MouseListener{

 Label l;

 MouseListenerExample(){

 addMouseListener(this);

 l=new Label();

 l.setBounds(20,50,100,20);

 add(l);

 setSize(300,300);

 setLayout(null);

 setVisible(true);

 }

 public void mouseClicked(MouseEvent e) {

 l.setText("Mouse Clicked");

 }

 public void mouseEntered(MouseEvent e) {

 l.setText("Mouse Entered");

 }

 public void mouseExited(MouseEvent e) {

 l.setText("Mouse Exited");

 }

 public void mousePressed(MouseEvent e) {

 l.setText("Mouse Pressed");

 }

22

 public void mouseReleased(MouseEvent e) {

 l.setText("Mouse Released");

 }

public static void main(String[] args) {

 new MouseListenerExample();

}

}

Java MouseListener Example 2

import java.awt.*;

import java.awt.event.*;

public class MouseListenerExample2 extends Frame implements MouseListener{

 MouseListenerExample2(){

 addMouseListener(this);

 setSize(300,300);

 setLayout(null);

 setVisible(true);

 }

 public void mouseClicked(MouseEvent e) {

 Graphics g=getGraphics();

 g.setColor(Color.BLUE);

 g.fillOval(e.getX(),e.getY(),30,30);

 }

 public void mouseEntered(MouseEvent e) {}

 public void mouseExited(MouseEvent e) {}

 public void mousePressed(MouseEvent e) {}

 public void mouseReleased(MouseEvent e) {}

public static void main(String[] args) {

 new MouseListenerExample2();

}

}

23

Java MouseMotionListener Interface
The Java MouseMotionListener is notified whenever you move or drag mouse. It is notified

against MouseEvent. The MouseMotionListener interface is found in java.awt.event package.

It has two methods.

Methods of MouseMotionListener interface

The signature of 2 methods found in MouseMotionListener interface are given below:

public abstract void mouseDragged(MouseEvent e);

public abstract void mouseMoved(MouseEvent e);

Java MouseMotionListener Example

import java.awt.*;

import java.awt.event.*;

public class MouseMotionListenerExample extends Frame implements

MouseMotionListener{

 MouseMotionListenerExample(){

 addMouseMotionListener(this);

 setSize(300,300);

 setLayout(null);

 setVisible(true);

 }

public void mouseDragged(MouseEvent e) {

 Graphics g=getGraphics();

 g.setColor(Color.BLUE);

 g.fillOval(e.getX(),e.getY(),20,20);

}

public void mouseMoved(MouseEvent e) {}

24

public static void main(String[] args) {

 new MouseMotionListenerExample();

}

}

Java KeyListener Interface
The Java KeyListener is notified whenever you change the state of key. It is notified against

KeyEvent. The KeyListener interface is found in java.awt.event package. It has three

methods.

Methods of KeyListener interface

The signature of 3 methods found in KeyListener interface are given below:

public abstract void keyPressed(KeyEvent e);

public abstract void keyReleased(KeyEvent e);

public abstract void keyTyped(KeyEvent e);

Java KeyListener Example

import java.awt.*;

import java.awt.event.*;

public class KeyListenerExample extends Frame implements KeyListener{

 Label l;

 TextArea area;

 KeyListenerExample(){

25

 l=new Label();

 l.setBounds(20,50,100,20);

 area=new TextArea();

 area.setBounds(20,80,300, 300);

 area.addKeyListener(this);

 add(l);add(area);

 setSize(400,400);

 setLayout(null);

 setVisible(true);

 }

 public void keyPressed(KeyEvent e) {

 l.setText("Key Pressed");

 }

 public void keyReleased(KeyEvent e) {

 l.setText("Key Released");

 }

 public void keyTyped(KeyEvent e) {

 l.setText("Key Typed");

 }

 public static void main(String[] args) {

 new KeyListenerExample();

 }

}

Java Adapter Classes

Java adapter classes provide the default implementation of listener interfaces. If you inherit

the adapter class, you will not be forced to provide the implementation of all the methods of

listener interfaces. So it saves code.

The adapter classes are found

in java.awt.event, java.awt.dnd and javax.swing.event packages. The Adapter classes with

their corresponding listener interfaces are given below.

https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/package

26

java.awt.event Adapter classes

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

Java WindowAdapter Example

import java.awt.*;

import java.awt.event.*;

public class AdapterExample{

 Frame f;

 AdapterExample(){

 f=new Frame("Window Adapter");

 f.addWindowListener(new WindowAdapter(){

 public void windowClosing(WindowEvent e) {

 f.dispose();

 }

 });

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

public static void main(String[] args) {

 new AdapterExample();

} }

https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/java-windowlistener
https://www.javatpoint.com/java-keylistener
https://www.javatpoint.com/java-mouselistener
https://www.javatpoint.com/java-mousemotionlistener

27

Java AWT TextField
The object of a TextField class is a text component that allows the editing of a

single line text. It inherits TextComponent class.

AWT TextField Class Declaration

public class TextField extends TextComponent

Java AWT TextField Example with ActionListener

import java.awt.*;

import java.awt.event.*;

public class TextFieldExample extends Frame implements ActionListener

{

 TextField tf1,tf2,tf3;

 Button b1,b2;

 TextFieldExample()

 {

 tf1=new TextField();

 tf1.setBounds(50,50,150,20);

 tf2=new TextField();

 tf2.setBounds(50,100,150,20);

 tf3=new TextField();

 tf3.setBounds(50,150,150,20);

 tf3.setEditable(false);

 b1=new Button("+");

 b1.setBounds(50,200,50,50);

 b2=new Button("-");

 b2.setBounds(120,200,50,50);

 b1.addActionListener(this);

 b2.addActionListener(this);

 add(tf1);add(tf2);add(tf3);add(b1);add(b2);

 setSize(300,300);

 setLayout(null);

 setVisible(true);

 }

 public void actionPerformed(ActionEvent e)

 {

 String s1=tf1.getText();

 String s2=tf2.getText();

 int a=Integer.parseInt(s1);

 int b=Integer.parseInt(s2);

 int c=0;

28

 if(e.getSource()==b1){

 c=a+b;

 }else if(e.getSource()==b2){

 c=a-b;

 }

 String result=String.valueOf(c);

 tf3.setText(result);

 }

public static void main(String[] args)

 {

 new TextFieldExample();

 }

}

Java AWT TextArea

The object of a TextArea class is a multi line region that displays text. It allows

the editing of multiple line text. It inherits TextComponent class.

AWT TextArea Class Declaration

public class TextArea extends TextComponent

Java AWT TextArea Example with ActionListener

import java.awt.*;

import java.awt.event.*;

public class TextAreaExample extends Frame implements ActionListener

{

Label l1,l2;

TextArea area;

Button b;

TextAreaExample()

{

 l1=new Label();

 l1.setBounds(50,50,100,30);

 l2=new Label();

29

 l2.setBounds(160,50,100,30);

 area=new TextArea();

 area.setBounds(20,100,300,300);

 b=new Button("Count Words");

 b.setBounds(100,400,100,30);

 b.addActionListener(this);

 add(l1);add(l2);add(area);add(b);

 setSize(400,450);

 setLayout(null);

 setVisible(true);

}

public void actionPerformed(ActionEvent e)

{

 String text=area.getText();

 String words[]=text.split("\\s");

 l1.setText("Words: "+words.length);

 l2.setText("Characters: "+text.length());

}

public static void main(String[] args)

{

 new TextAreaExample();

}

}

Java AWT Checkbox

The Checkbox class is used to create a checkbox. It is used to turn an option on

(true) or off (false). Clicking on a Checkbox changes its state from "on" to "off"

or from "off" to "on".

AWT Checkbox Class Declaration

public class Checkbox extends Component

Java AWT Checkbox Example with ItemListener

import java.awt.*;

import java.awt.event.*;

30

public class CheckboxExample

{

 CheckboxExample()

 {

 Frame f= new Frame("CheckBox Example");

 final Label label = new Label();

 label.setAlignment(Label.CENTER);

 label.setSize(400,100);

 Checkbox checkbox1 = new Checkbox("C++");

 checkbox1.setBounds(100,100, 50,50);

 Checkbox checkbox2 = new Checkbox("Java");

 checkbox2.setBounds(100,150, 50,50);

 f.add(checkbox1); f.add(checkbox2); f.add(label);

 checkbox1.addItemListener(new ItemListener() {

 public void itemStateChanged(ItemEvent e) {

 label.setText("C++ Checkbox: "

 + (e.getStateChange()==1?"checked":"unchecked"));

 }

 });

 checkbox2.addItemListener(new ItemListener()

 {

 public void itemStateChanged(ItemEvent e)

 {

 label.setText("Java Checkbox: "

 + (e.getStateChange()==1?"checked":"unchecked"));

 }

 });

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 }

public static void main(String args[])

{

 new CheckboxExample();

}

}

31

Java AWT CheckboxGroup

The object of CheckboxGroup class is used to group together a set of Checkbox.

At a time only one check box button is allowed to be in "on" state and

remaining check box button in "off" state. It inherits the object class.

AWT CheckboxGroup Class Declaration

public class CheckboxGroup extends Object

Java AWT CheckboxGroup Example with ItemListener

import java.awt.*;

import java.awt.event.*;

public class CheckboxGroupExample

{

 CheckboxGroupExample(){

 Frame f= new Frame("CheckboxGroup Example");

 final Label label = new Label();

 label.setAlignment(Label.CENTER);

 label.setSize(400,100);

 CheckboxGroup cbg = new CheckboxGroup();

 Checkbox checkBox1 = new Checkbox("C++", cbg, false);

 checkBox1.setBounds(100,100, 50,50);

 Checkbox checkBox2 = new Checkbox("Java", cbg, false);

 checkBox2.setBounds(100,150, 50,50);

 f.add(checkBox1); f.add(checkBox2); f.add(label);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 checkBox1.addItemListener(new ItemListener() {

 public void itemStateChanged(ItemEvent e) {

 label.setText("C++ checkbox: Checked");

 }

 });

 checkBox2.addItemListener(new ItemListener() {

 public void itemStateChanged(ItemEvent e) {

32

 label.setText("Java checkbox: Checked");

 }

 });

 }

public static void main(String args[])

{

 new CheckboxGroupExample();

}

}

Java AWT Choice
The object of Choice class is used to show popup menu of choices. Choice

selected by user is shown on the top of a menu. It inherits Component class.

AWT Choice Class Declaration

public class Choice extends Component

Java AWT Choice Example with ActionListener

import java.awt.*;

import java.awt.event.*;

public class ChoiceExample

{

 ChoiceExample(){

 Frame f= new Frame();

 final Label label = new Label();

 label.setAlignment(Label.CENTER);

 label.setSize(400,100);

 Button b=new Button("Show");

 b.setBounds(200,100,50,20);

 final Choice c=new Choice();

 c.setBounds(100,100, 75,75);

 c.add("C");

 c.add("C++");

33

 c.add("Java");

 c.add("PHP");

 c.add("Android");

 f.add(c);f.add(label); f.add(b);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 b.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 String data = "Programming language Selected: "+

c.getItem(c.getSelectedIndex());

 label.setText(data);

 }

 });

 }

public static void main(String args[])

{

 new ChoiceExample();

}

}

Java AWT List
The object of List class represents a list of text items. By the help of list, user

can choose either one item or multiple items. It inherits Component class.

AWT List class Declaration

public class List extends Component

Java AWT List Example with ActionListener

import java.awt.*;

import java.awt.event.*;

public class ListExample

{

 ListExample(){

34

 Frame f= new Frame();

 final Label label = new Label();

 label.setAlignment(Label.CENTER);

 label.setSize(500,100);

 Button b=new Button("Show");

 b.setBounds(200,150,80,30);

 final List l1=new List(4, false);

 l1.setBounds(100,100, 70,70);

 l1.add("C");

 l1.add("C++");

 l1.add("Java");

 l1.add("PHP");

 final List l2=new List(4, true);

 l2.setBounds(100,200, 70,70);

 l2.add("Turbo C++");

 l2.add("Spring");

 l2.add("Hibernate");

 l2.add("CodeIgniter");

 f.add(l1); f.add(l2); f.add(label); f.add(b);

 f.setSize(450,450);

 f.setLayout(null);

 f.setVisible(true);

 b.addActionListener(new ActionListener() {

 public void actionPerformed(ActionEvent e) {

 String data = "Programming language Selected:

"+l1.getItem(l1.getSelectedIndex());

 data += ", Framework Selected:";

 for(String frame:l2.getSelectedItems()){

 data += frame + " ";

 }

 label.setText(data);

 }

 });

}

public static void main(String args[])

{

 new ListExample();

}

}

35

Java AWT Scrollbar
The object of Scrollbar class is used to add horizontal and vertical scrollbar.

Scrollbar is a GUI component allows us to see invisible number of rows and

columns.

AWT Scrollbar class declaration

public class Scrollbar extends Component

Java AWT Scrollbar Example with AdjustmentListener

import java.awt.*;

import java.awt.event.*;

class ScrollbarExample{

 ScrollbarExample(){

 Frame f= new Frame("Scrollbar Example");

 final Label label = new Label();

 label.setAlignment(Label.CENTER);

 label.setSize(400,100);

 final Scrollbar s=new Scrollbar();

 s.setBounds(100,100, 50,100);

 f.add(s);f.add(label);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

 s.addAdjustmentListener(new AdjustmentListener() {

 public void adjustmentValueChanged(AdjustmentEvent e) {

 label.setText("Vertical Scrollbar value is:"+ s.getValue());

 }

 });

 }

public static void main(String args[]){

new ScrollbarExample();

36

}

}

Java AWT MenuItem and Menu
The object of MenuItem class adds a simple labeled menu item on menu. The

items used in a menu must belong to the MenuItem or any of its subclass.

The object of Menu class is a pull down menu component which is displayed on

the menu bar. It inherits the MenuItem class.

AWT MenuItem class declaration

public class MenuItem extends MenuComponent

AWT Menu class declaration

public class Menu extends MenuItem

Java AWT MenuItem and Menu Example

import java.awt.*;

class MenuExample

{

 MenuExample(){

 Frame f= new Frame("Menu and MenuItem Example");

 MenuBar mb=new MenuBar();

 Menu menu=new Menu("Menu");

 Menu submenu=new Menu("Sub Menu");

 MenuItem i1=new MenuItem("Item 1");

 MenuItem i2=new MenuItem("Item 2");

 MenuItem i3=new MenuItem("Item 3");

 MenuItem i4=new MenuItem("Item 4");

 MenuItem i5=new MenuItem("Item 5");

 menu.add(i1);

37

 menu.add(i2);

 menu.add(i3);

 submenu.add(i4);

 submenu.add(i5);

 menu.add(submenu);

 mb.add(menu);

 f.setMenuBar(mb);

 f.setSize(400,400);

 f.setLayout(null);

 f.setVisible(true);

}

public static void main(String args[])

{

new MenuExample();

}

}

Java LayoutManagers
The LayoutManagers are used to arrange components in a particular manner.

LayoutManager is an interface that is implemented by all the classes of layout

managers. There are following classes that represents the layout managers:

 java.awt.BorderLayout

 java.awt.FlowLayout

 java.awt.GridLayout

 java.awt.CardLayout

 java.awt.GridBagLayout

 javax.swing.BoxLayout

 javax.swing.GroupLayout

 javax.swing.ScrollPaneLayout

 javax.swing.SpringLayout etc.

38

Java BorderLayout
The BorderLayout is used to arrange the components in five regions: north,

south, east, west and center. Each region (area) may contain one component

only. It is the default layout of frame or window. The BorderLayout provides

five constants for each region:

 public static final int NORTH

 public static final int SOUTH

 public static final int EAST

 public static final int WEST

 public static final int CENTER

Constructors of BorderLayout class:

 BorderLayout(): creates a border layout but with no gaps between the

components.

 JBorderLayout(int hgap, int vgap): creates a border layout with the

given horizontal and vertical gaps between the components.

BorderLayout Example:
import java.awt.*;

import java.awt.event.*;

public class Border {

Frame f;

Border()

{

 f=new Frame();

 Button b1=new Button("NORTH");

 Button b2=new Button("SOUTH");

 Button b3=new Button("EAST");

 Button b4=new Button("WEST");

 Button b5=new Button("CENTER");

 f.add(b1,BorderLayout.NORTH);

 f.add(b2,BorderLayout.SOUTH);

 f.add(b3,BorderLayout.EAST);

 f.add(b4,BorderLayout.WEST);

 f.add(b5,BorderLayout.CENTER);

 f.setSize(300,300);

 f.setVisible(true);

 f.addWindowListener(new WindowAdapter()

 {

 public void windowClosing(WindowEvent e)

 {

39

 f.dispose();

 }

 });

}

public static void main(String[] args) {

 new Border();

}

}

Java GridLayout
The GridLayout is used to arrange the components in rectangular grid. One

component is displayed in each rectangle.

Constructors of GridLayout class:

 GridLayout(): creates a grid layout with one column per component in

a row.

 GridLayout(int rows, int columns): creates a grid layout with the given

rows and columns but no gaps between the components.

 GridLayout(int rows, int columns, int hgap, int vgap): creates a grid

layout with the given rows and columns alongwith given horizontal

and vertical gaps.

Example of GridLayout class

import java.awt.*;

class MyGridLayout

{

 Frame f;

 MyGridLayout()

 {

 f=new Frame();

 Button b1=new Button("1");

 Button b2=new Button("2");

 Button b3=new Button("3");

40

 Button b4=new Button("4");

 Button b5=new Button("5");

 Button b6=new Button("6");

 Button b7=new Button("7");

 Button b8=new Button("8");

 Button b9=new Button("9");

 f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);

 f.add(b6);f.add(b7);f.add(b8);f.add(b9);

 f.setLayout(new GridLayout(3,3));

 //setting grid layout of 3 rows and 3 columns

 f.setSize(300,300);

 f.setVisible(true);

}

public static void main(String[] args) {

 new MyGridLayout();

}

}

Java FlowLayout
The FlowLayout is used to arrange the components in a line, one after

another (in a flow). It is the default layout of applet or panel.

Fields of FlowLayout class

 public static final int LEFT

 public static final int RIGHT

 public static final int CENTER

 public static final int LEADING

 public static final int TRAILING

41

Constructors of FlowLayout class

 FlowLayout(): creates a flow layout with centered alignment and a

default 5 unit horizontal and vertical gap.

 FlowLayout(int align): creates a flow layout with the given alignment

and a default 5 unit horizontal and vertical gap.

 FlowLayout(int align, int hgap, int vgap): creates a flow layout with

the given alignment and the given horizontal and vertical gap.

Example of FlowLayout class:

import java.awt.*;

class MyFlowLayout

{

 Frame f;

 MyFlowLayout()

 {

 f=new Frame();

 Button b1=new Button("1");

 Button b2=new Button("2");

 Button b3=new Button("3");

 Button b4=new Button("4");

 Button b5=new Button("5");

 f.add(b1);f.add(b2);f.add(b3);f.add(b4);f.add(b5);

 f.setLayout(new FlowLayout(FlowLayout.RIGHT));

 //setting flow layout of right alignment

 f.setSize(300,300);

 f.setVisible(true);

 }

 public static void main(String[] args)

 {

 new MyFlowLayout();

 }

}

42

Java BoxLayout
The BoxLayout is used to arrange the components either vertically or

horizontally. For this purpose, BoxLayout provides four constants. They are as

follows:

Note: BoxLayout class is found in javax.swing package.

Fields of BoxLayout class

 public static final int X_AXIS

 public static final int Y_AXIS

 public static final int LINE_AXIS

 public static final int PAGE_AXIS

Constructor of BoxLayout class

 BoxLayout(Container c, int axis): creates a box layout that arranges the

components with the given axis.

Example of BoxLayout class with Y-AXIS:

import java.awt.*;

import javax.swing.*;

class BoxLayoutExample1 extends Frame

 {

 Button buttons[];

 BoxLayoutExample1 ()

 {

 buttons = new Button [5];

 for (int i = 0;i<5;i++)

 {

 buttons[i] = new Button ("Button " + (i + 1));

 add (buttons[i]);

 }

 setLayout (new BoxLayout (this,BoxLayout.Y_AXIS));

 setSize(400,400);

 setVisible(true);

}

public static void main(String args[])

{

 BoxLayoutExample1 b=new BoxLayoutExample1();

 }

}

43

Java CardLayout
The CardLayout class manages the components in such a manner that only one

component is visible at a time. It treats each component as a card that is why it

is known as CardLayout.

Constructors of CardLayout class

 CardLayout(): creates a card layout with zero horizontal and vertical gap.

 CardLayout(int hgap, int vgap): creates a card layout with the given

horizontal and vertical gap.

Commonly used methods of CardLayout class

 public void next(Container parent): is used to flip to the next card of

the given container.

 public void previous(Container parent): is used to flip to the previous

card of the given container.

 public void first(Container parent): is used to flip to the first card of

the given container.

 public void last(Container parent): is used to flip to the last card of the

given container.

 public void show(Container parent, String name): is used to flip to the

specified card with the given name.

Example of CardLayout class

import java.awt.*;

import java.awt.event.*;

import javax.swing.*;

class CardLayoutExample extends JFrame implements ActionListener

{

 CardLayout card;

 JButton b1,b2,b3;

 Container c;

44

 CardLayoutExample()

 {

 c=getContentPane();

 card=new CardLayout(40,30);

 //create CardLayout object with 40 hor space and 30 ver space

 c.setLayout(card);

 b1=new JButton("Apple");

 b2=new JButton("Boy");

 b3=new JButton("Cat");

 b1.addActionListener(this);

 b2.addActionListener(this);

 b3.addActionListener(this);

 c.add("a",b1);c.add("b",b2);c.add("c",b3);

 }

 public void actionPerformed(ActionEvent e)

 {

 card.next(c);

 }

 public static void main(String[] args) {

 CardLayoutExample cl=new CardLayoutExample();

 cl.setSize(400,400);

 cl.setVisible(true);

 cl.setDefaultCloseOperation(EXIT_ON_CLOSE);

 }

}

UNIT-VI

Describe Event Delegation Model

• The Delegation Event model is defined to handle events in GUI

programming languages.

• The GUI stands for Graphical User Interface, where a user

graphically/visually interacts with the system.

• The GUI programming is inherently event-driven; whenever a user initiates

an activity such as a mouse activity, clicks, scrolling, etc., each is known

as an event that is mapped to a code to respond to functionality to the user.

This is known as event handling.

Event Processing in Java:

Java support event processing since Java 1.0. It provides support for AWT (

Abstract Window Toolkit), which is an API used to develop the Desktop

application. In Java 1.0, the AWT was based on inheritance. To catch and

process GUI events for a program, it should hold subclass GUI components

and override action() or handleEvent() methods, below image demonstrates

the event processing.

Basically, an Event Model is based on the following three

components:

• Events

• Events Sources

• Events Listeners

Events

• The Events are the objects that define state change in a source.

• An event can be generated as a reaction of a user while interacting with

GUI elements.

• Some of the event generation activities are moving the mouse pointer,

clicking on a button, pressing the keyboard key, selecting an item from the

list, and so on.

• We can also consider many other user operations as events.

• The Events may also occur that may be not related to user interaction, such

as a timer expires, counter exceeded, system failures, or a task is

completed, etc.

• We can define events for any of the applied actions.

Event Sources

• A source is an object that causes and generates an event.

• It generates an event when the internal state of the object is changed.

• The sources are allowed to generate several different types of events.

A source must register a listener to receive notifications for a specific event.

Each event contains its registration method.

Below is an example:

public void addTypeListener (TypeListener e1)

• From the above syntax, the Type is the name of the event, and e1 is a

reference to the event listener.

• For example, for a keyboard event listener, the method will be called as

addKeyListener().

• For the mouse event listener, the method will be called as

addMouseMotionListener().

• When an event is triggered using the respected source, all the events will

be notified to registered listeners and receive the event object.

• This process is known as event multicasting. In few cases, the event

notification will only be sent to listeners that register to receive them.

Event Listeners

• An event listener is an object that is invoked when an event triggers.

• The listeners require two things; first, it must be registered with a source;

however, it can be registered with several resources to receive notification

about the events.

• Second, it must implement the methods to receive and process the received

notifications.

Types of Events

The events are categories into the following two categories:

The Foreground Events:

• The foreground events are those events that require direct interaction of

the user.

• These types of events are generated as a result of user interaction with the

GUI component.

• For example, clicking on a button, mouse movement, pressing a keyboard

key, selecting an option from the list, etc.

The Background Events :

• The Background events are those events that result from the interaction of

the end-user.

• For example, an Operating system interrupts system failure (Hardware or

Software).

To handle these events, we need an event handling mechanism that provides

control over the events and responses.

Adapter classes and inner classes with example programs

• Java adapter classes provide the default implementation of listener

interfaces.

• If you inherit the adapter class, you will not be forced to provide the

implementation of all the methods of listener interfaces. So it saves code.

• The adapter classes are found in java.awt.event, java.awt.dnd and

javax.swing.event packages.

• The Adapter classes with their corresponding listener interfaces are given

below.

java.awt.event Adapter classes

Adapter class Listener interface

WindowAdapter WindowListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

FocusAdapter FocusListener

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

Java WindowAdapter Example

import java.awt.*;

import java.awt.event.*;

public class AdapterExample{

Frame f;

AdapterExample(){

f=new Frame("Window Adapter");

f.addWindowListener(new WindowAdapter(){

public void windowClosing(WindowEvent e) {

f.dispose();
}

});

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String[] args) {

new AdapterExample();
}

}

https://www.javatpoint.com/interface-in-java
https://www.javatpoint.com/java-windowlistener
https://www.javatpoint.com/java-keylistener
https://www.javatpoint.com/java-mouselistener
https://www.javatpoint.com/java-mousemotionlistener

Java MouseAdapter Example
import java.awt.*;

import java.awt.event.*;

public class MouseAdapterExample extends MouseAdapter{

Frame f;
MouseAdapterExample(){

f=new Frame("Mouse Adapter");

f.addMouseListener(this);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);
}

public void mouseClicked(MouseEvent e) {

Graphics g=f.getGraphics();

g.setColor(Color.BLUE);

g.fillOval(e.getX(),e.getY(),30,30);

}

public static void main(String[] args) {

new MouseAdapterExample();

}

}

Java KeyAdapter Example:
import java.awt.*;

import java.awt.event.*;

public class KeyAdapterExample extends KeyAdapter{

Label l;

TextArea area;

Frame f;
KeyAdapterExample(){

f=new Frame("Key Adapter");

l=new Label();

l.setBounds(20,50,200,20);

area=new TextArea();

area.setBounds(20,80,300, 300);

area.addKeyListener(this);

f.add(l);f.add(area);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public void keyReleased(KeyEvent e) {

String text=area.getText();

String words[]=text.split("\\s");

l.setText("Words: "+words.length+" Characters:"+text.length());
}

public static void main(String[] args) {

new KeyAdapterExample();

}

}

Java Swings
• Java Swing is a part of Java Foundation Classes (JFC) that is used to create

window-based applications.

• It is built on the top of AWT (Abstract Windowing Toolkit) API and

entirely written in java.

• Unlike AWT, Java Swing provides platform-independent and lightweight

components.

• The javax.swing package provides classes for java swing API such as

JButton, JTextField, JTextArea, JRadioButton, JCheckbox, JMenu,

JColorChooser etc.

Difference between AWT and Swing:

Java AWT Java Swing

AWT components are platform-

dependent.

Java swing components are platform-

independent.

AWT components are heavyweight. Swing components are lightweight.

AWT doesn't support pluggable look

and feel.

Swing supports pluggable look and feel.

AWT provides less components than

Swing.

Swing provides more powerful

components such as tables, lists,

scrollpanes, colorchooser, tabbedpane etc.

AWT doesn't follows MVC(Model View

Controller) where model represents data,

view represents presentation and

controller acts as an interface between

model and view.

Swing follows MVC.

Hierarchy of Java Swing classes

Java Swing Examples

There are two ways to create a frame:

• By creating the object of Frame class (association)

• By extending Frame class (inheritance)

Example of Swing by Association inside constructor:
import javax.swing.*;

public class Simple {

JFrame f;
Simple(){

f=new JFrame();//creating instance of JFrame

JButton b=new JButton("click");//creating instance of JButton

b.setBounds(130,100,100, 40);

f.add(b);//adding button in JFrame

f.setSize(400,500);//400 width and 500 height

f.setLayout(null);//using no layout managers

f.setVisible(true);//making the frame visible

}

public static void main(String[] args) {

new Simple();
}

}

Simple example of Swing by inheritance
We can also inherit the JFrame class, so there is no need to create the instance

of JFrame class explicitly.

import javax.swing.*;

public class Simple2 extends JFrame{//inheriting JFrame

JFrame f;
Simple2(){

JButton b=new JButton("click");//create button

b.setBounds(130,100,100, 40);

add(b);//adding button on frame

setSize(400,500);

setLayout(null);

setVisible(true);
}

public static void main(String[] args) {

new Simple2();
}}

Java JButton

The JButton class is used to create a labeled button that has platform independent

implementation. The application result in some action when the button is pushed.

It inherits AbstractButton class.

JButton class declaration

public class JButton extends AbstractButton

Commonly used Constructors:

Constructor Description

JButton() It creates a button with no text and icon.

JButton(String s) It creates a button with the specified text.

JButton(Icon i) It creates a button with the specified icon object.

Commonly used Methods of AbstractButton class:

Methods Description

void setText(String s) It is used to set specified text on button

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setIcon(Icon b) It is used to set the specified Icon on the button.

Icon getIcon() It is used to get the Icon of the button.

void setMnemonic(int a) It is used to set the mnemonic on the button.

void addActionListener(ActionListener a) It is used to add the action listener to this object.

Java JButton Example with ActionListener

import java.awt.event.*;

import javax.swing.*;
public class ButtonExample {

public static void main(String[] args) {

JFrame f=new JFrame("Button Example");

final JTextField tf=new JTextField();

tf.setBounds(50,50, 150,20);

JButton b=new JButton("Click Here");

b.setBounds(50,100,95,30);

b.addActionListener(new ActionListener(){

public void actionPerformed(ActionEvent e){

tf.setText("Welcome to Java.");
}

});

f.add(b);f.add(tf);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);
}

}

Example of displaying image on the button:

import javax.swing.*;

public class ButtonExample{

ButtonExample(){

JFrame f=new JFrame("Button Example");

JButton b=new JButton(new ImageIcon("D:\\icon.png"));

b.setBounds(100,100,100, 40);

f.add(b);

f.setSize(300,400);

f.setLayout(null);

f.setVisible(true);
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

public static void main(String[] args) {

https://www.javatpoint.com/java-actionlistener

new ButtonExample();
}

}

Java JLabel:

The object of JLabel class is a component for placing text in a container. It is used

to display a single line of read only text. The text can be changed by an application

but a user cannot edit it directly. It inherits JComponent class.

JLabel class declaration

public class JLabel extends JComponent

Commonly used Constructors:

Constructor Description

JLabel() Creates a JLabel instance with no image and

with an empty string for the title.

JLabel(String s) Creates a JLabel instance with the specified

text.

JLabel(Icon i) Creates a JLabel instance with the specified

image.

JLabel(String s, Icon i, int

horizontalAlignment)

Creates a JLabel instance with the specified

text, image, and horizontal alignment.

Methods Description

String getText() t returns the text string that a label displays.

void setText(String text) It defines the single line of text this component will

display.

void It sets the alignment of the label's contents along the

setHorizontalAlignment(int

alignment)

X axis.

Icon getIcon() It returns the graphic image that the label displays.

int

getHorizontalAlignment()

It returns the alignment of the label's contents along

the X axis.

Java JTextField

The object of a JTextField class is a text component that allows the editing of a

single line text. It inherits JTextComponent class.

JTextField class declaration

public class JTextField extends JTextComponent

Commonly used Constructors:

Constructor Description

JTextField() Creates a new TextField

JTextField(String text) Creates a new TextField initialized with the

specified text.

JTextField(String text, int

columns)

Creates a new TextField initialized with the

specified text and columns.

JTextField(int columns) Creates a new empty TextField with the specified

number of columns.

Commonly used Methods:

Methods Description

void addActionListener(ActionListener

l)

It is used to add the specified action listener to

receive action events from this textfield.

Action getAction() It returns the currently set Action for this

ActionEvent source, or null if no Action is set.

void setFont(Font f) It is used to set the current font.

void

removeActionListener(ActionListener l)

It is used to remove the specified action listener so that

it no longer receives action events from this textfield.

Java JTextArea

The object of a JTextArea class is a multi line region that displays text. It allows

the editing of multiple line text. It inherits JTextComponent class

JTextArea class declaration

public class JTextArea extends JTextComponent

Commonly used Constructors:

Constructor Description

JTextArea() Creates a text area that displays no text initially.

JTextArea(String s) Creates a text area that displays specified text

initially.

JTextArea(int row, int

column)

Creates a text area with the specified number of rows

and columns that displays no text initially.

JTextArea(String s, int row,

int column)

Creates a text area with the specified number of rows

and columns that displays specified text.

Commonly used Methods:

Methods Description

void setRows(int rows) It is used to set specified number of rows.

void setColumns(int cols) It is used to set specified number of columns.

void setFont(Font f) It is used to set the specified font.

void insert(String s, int

position)

It is used to insert the specified text on the specified

position.

void append(String s) It is used to append the given text to the end of the

document.

Java JTextArea Example with ActionListener

import javax.swing.*;

import java.awt.event.*;

public class TextAreaExample implements ActionListener{

JLabel l1,l2;

JTextArea area;

JButton b;

TextAreaExample() {

JFrame f= new JFrame();

l1=new JLabel();

l1.setBounds(50,25,100,30);

l2=new JLabel();

l2.setBounds(160,25,100,30);

area=new JTextArea();

area.setBounds(20,75,250,200);

b=new JButton("Count Words");

b.setBounds(100,300,120,30);

b.addActionListener(this);

f.add(l1);f.add(l2);f.add(area);f.add(b);

f.setSize(450,450);

f.setLayout(null);

f.setVisible(true);
}

public void actionPerformed(ActionEvent e){

String text=area.getText();

String words[]=text.split("\\s");

l1.setText("Words: "+words.length);

l2.setText("Characters: "+text.length());
}

public static void main(String[] args) {

new TextAreaExample();
}

}

Java JPasswordField

The object of a JPasswordField class is a text component specialized for password

entry. It allows the editing of a single line of text. It inherits JTextField class.

JPasswordField class declaration

public class JPasswordField extends JTextField

Commonly used Constructors:

Constructor Description

JPasswordField() Constructs a new JPasswordField, with a default

document, null starting text string, and 0 column

width.

JPasswordField(int columns) Constructs a new empty JPasswordField with

the specified number of columns.

JPasswordField(String text) Constructs a new JPasswordField initialized

with the specified text.

JPasswordField(String text,

int columns)

Construct a new JPasswordField initialized with

the specified text and columns.

Java JPasswordField Example
Java JPasswordField Example with ActionListener

import javax.swing.*;
import java.awt.event.*;

public class PasswordFieldExample {

public static void main(String[] args) {

JFrame f=new JFrame("Password Field Example");

final JLabel label = new JLabel();

label.setBounds(20,150, 200,50);

final JPasswordField value = new JPasswordField();

value.setBounds(100,75,100,30);

JLabel l1=new JLabel("Username:");

l1.setBounds(20,20, 80,30);

JLabel l2=new JLabel("Password:");

l2.setBounds(20,75, 80,30);

JButton b = new JButton("Login");

b.setBounds(100,120, 80,30);

final JTextField text = new JTextField();

text.setBounds(100,20, 100,30);

f.add(value); f.add(l1); f.add(label); f.add(l2); f.add(b); f.add(text);

f.setSize(300,300);

f.setLayout(null);

f.setVisible(true);

b.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

String data = "Username " + text.getText();

data += ", Password: "

+ new String(value.getPassword());

label.setText(data);
}

});

}

}

Java JCheckBox

The JCheckBox class is used to create a checkbox. It is used to turn an option on

(true) or off (false). Clicking on a CheckBox changes its state from "on" to "off"

or from "off" to "on ".It inherits JToggleButton class.

JCheckBox class declaration

public class JCheckBox extends JToggleButton

Commonly used Constructors:

Constructor Description

JJCheckBox() Creates an initially unselected check box button

with no text, no icon.

JChechBox(String s) Creates an initially unselected check box with

text.

JCheckBox(String text,

boolean selected)

Creates a check box with text and specifies

whether or not it is initially selected.

JCheckBox(Action a) Creates a check box where properties are taken

from the Action supplied.

Java JRadioButton

The JRadioButton class is used to create a radio button. It is used to choose one

option from multiple options. It is widely used in exam systems or quiz.

It should be added in ButtonGroup to select one radio button only.

JRadioButton class declaration

public class JRadioButton extends JToggleButton

https://www.javatpoint.com/java-jtogglebutton

Commonly used Constructors:

Constructor Description

JRadioButton() Creates an unselected radio button with no

text.

JRadioButton(String s) Creates an unselected radio button with

specified text.

JRadioButton(String s, boolean

selected)

Creates a radio button with the specified text

and selected status.

Commonly used Methods:

Methods Description

void setText(String s) It is used to set specified text on button.

String getText() It is used to return the text of the button.

void setEnabled(boolean b) It is used to enable or disable the button.

void setIcon(Icon b) It is used to set the specified Icon on the button.

Icon getIcon() It is used to get the Icon of the button.

void setMnemonic(int a) It is used to set the mnemonic on the button.

void

addActionListener(ActionListener a)

It is used to add the action listener to this object.

Java JRadioButton Example with ActionListener

import javax.swing.*;

import java.awt.event.*;

class RadioButtonExample extends JFrame implements ActionListener{

JRadioButton rb1,rb2;

JButton b;

RadioButtonExample(){

rb1=new JRadioButton("Male");

rb1.setBounds(100,50,100,30);

rb2=new JRadioButton("Female");

rb2.setBounds(100,100,100,30);

ButtonGroup bg=new ButtonGroup();

bg.add(rb1);bg.add(rb2);

b=new JButton("click");

b.setBounds(100,150,80,30);

b.addActionListener(this);

add(rb1);add(rb2);add(b);

setSize(300,300);

setLayout(null);

setVisible(true);

}

public void actionPerformed(ActionEvent e){

if(rb1.isSelected()){

JOptionPane.showMessageDialog(this,"You are Male.");
}

if(rb2.isSelected()){

JOptionPane.showMessageDialog(this,"You are Female.");
}

}

public static void main(String args[]){

new RadioButtonExample();
}}

Java JComboBox

The object of Choice class is used to show popup menu of choices. Choice

selected by user is shown on the top of a menu. It inherits JComponent class.

https://www.javatpoint.com/java-jmenuitem-and-jmenu
https://www.javatpoint.com/java-jcomponent

JComboBox class declaration

public class JComboBox extends JComponent

Commonly used Constructors:

Constructor Description

JComboBox() Creates a JComboBox with a default data model.

JComboBox(Object[]

items)

Creates a JComboBox that contains the elements in

the specified array.

JComboBox(Vector<?>

items)

Creates a JComboBox that contains the elements in

the specified Vector.

Commonly used Methods:

Methods Description

void addItem(Object anObject) It is used to add an item to the item list.

void removeItem(Object anObject) It is used to delete an item to the item list.

void removeAllItems() It is used to remove all the items from the list.

void setEditable(boolean b) It is used to determine whether the JComboBox

editable.

void

addActionListener(ActionListener a)

It is used to add the ActionListener.

void addItemListener(ItemListener i) It is used to add the ItemListener.

https://www.javatpoint.com/array-in-java
https://www.javatpoint.com/scala-vector
https://www.javatpoint.com/java-actionlistener
https://www.javatpoint.com/java-itemlistener

Java JComboBox Example with ActionListener

import javax.swing.*;

import java.awt.event.*;

public class ComboBoxExample {

JFrame f;
ComboBoxExample(){

f=new JFrame("ComboBox Example");

final JLabel label = new JLabel();

label.setHorizontalAlignment(JLabel.CENTER);

label.setSize(400,100);

JButton b=new JButton("Show");

b.setBounds(200,100,75,20);

String languages[]={"C","C++","C#","Java","PHP"};

final JComboBox cb=new JComboBox(languages);

cb.setBounds(50, 100,90,20);

f.add(cb); f.add(label); f.add(b);

f.setLayout(null);

f.setSize(350,350);

f.setVisible(true);

b.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
String data = "Programming language Selected: "

+ cb.getItemAt(cb.getSelectedIndex());

label.setText(data);
}

});

}

public static void main(String[] args) {

new ComboBoxExample();
}

}

Java JTable

The JTable class is used to display data in tabular form. It is composed of rows

and columns.

JTable class declaration

Commonly used Constructors:

Constructor Description

JTable() Creates a table with empty cells.

JTable(Object[][] rows, Object[] columns) Creates a table with the specified data.

Java JTable Example

import javax.swing.*;

public class TableExample {

JFrame f;

TableExample(){

f=new JFrame();

String data[][]={ {"101","Amit","670000"},

{"102","Jai","780000"},

{"101","Sachin","700000"}};

String column[]={"ID","NAME","SALARY"};

JTable jt=new JTable(data,column);

jt.setBounds(30,40,200,300);

JScrollPane sp=new JScrollPane(jt);

f.add(sp);

f.setSize(300,400);

f.setVisible(true);

}

public static void main(String[] args) {

new TableExample();

}

}

Java JList

The object of JList class represents a list of text items. The list of text items can be set

up so that the user can choose either one item or multiple items. It inherits

JComponent class.

JList class declaration

1. public class JList extends JComponent

Commonly used Constructors:

Constructor Description

JList() Creates a JList with an empty, read-only, model.

JList(ary[] listData) Creates a JList that displays the elements in the specified

array.

JList(ListModel<ary>

dataModel)

Creates a JList that displays elements from the specified, non-null,

mode

Commonly used Methods:

Methods Description

Void addListSelectionListener(ListSelectionListener

listener)

It is used to add a listener to the list, to be

notified e time a change to the selection

occurs.

int getSelectedIndex() It is used to return the smallest selected cell

index.

ListModel getModel() It is used to return the data model that holds a

lis items displayed by the JList component.

void setListData(Object[] listData) It is used to create a read-only ListModel from

an a of objects.

Java JTree

The JTree class is used to display the tree structured data or hierarchical data.

JTree is a complex component. It has a 'root node' at the top most which is a

parent for all nodes in the tree. It inherits JComponent class.

JTree class declaration

public class JTree extends JComponent

Commonly used Constructors:

Constructor Description

JTree() Creates a JTree with a sample model.

JTree(Object

[] value)

Creates a JTree with every element of the specified array as the

child o new root node.

JTree(TreeNo

de root)

Creates a JTree with the specified TreeNode as its root, which

displ the root node.

Java JTree Example

import javax.swing.*;

import javax.swing.tree.DefaultMutableTreeNode;

public class TreeExample {

JFrame f;

TreeExample(){

f=new JFrame();

DefaultMutableTreeNode style=new DefaultMutableTreeNode("Style");

DefaultMutableTreeNode color=new DefaultMutableTreeNode("color");

DefaultMutableTreeNode font=new DefaultMutableTreeNode("font");

style.add(color);

style.add(font);

DefaultMutableTreeNode red=new DefaultMutableTreeNode("red");

DefaultMutableTreeNode blue=new DefaultMutableTreeNode("blue");

DefaultMutableTreeNode black=new DefaultMutableTreeNode("black");

DefaultMutableTreeNode green=new DefaultMutableTreeNode("green");

color.add(red); color.add(blue); color.add(black); color.add(green);

JTree jt=new JTree(style);

f.add(jt);

f.setSize(200,200);

f.setVisible(true);

}

public static void main(String[] args) {

new TreeExample();

}}

Java JOptionPane

The JOptionPane class is used to provide standard dialog boxes such as message

dialog box, confirm dialog box and input dialog box. These dialog boxes are used to

display information or get input from the user. The JOptionPane class inherits

JComponent class.

JOptionPane class declaration

1. public class JOptionPane extends JComponent implements Accessible

Common Constructors of JOptionPane class

Constructor Description

JOptionPane() It is used to create a JOptionPane with a test

message.

JOptionPane(Object

message)

It is used to create an instance of JOptionPane to display

a message.

JOptionPane(Object

message, int messageType

It is used to create an instance of JOptionPane to

display a message specified message type and

default options.

Common Methods of JOptionPane class

Methods Description

JDialog createDialog(String title) It is used to create and return a new parent

JDialog with the specified title.

static void showMessageDialog(Component

parentComponent, Object message)

It is used to create an information-mess

dialog titled "Message".

static void showMessageDialog(Component

parentComponent, Object message, String title, int

messageType)

It is used to create a message dialog with gi

title and messageType.

static int showConfirmDialog(Component

parentComponent, Object message)

It is used to create a dialog with the options

No and Cancel; with the title, Select an Option.

static String showInputDialog(Component

parentComponent, Object message)

It is used to show a question-message dia

requesting input from the user parented

parentComponent.

void setInputValue(Object newValue) It is used to set the input value that was selec

or input by the user.

Java JOptionPane Example: showMessageDialog()

import javax.swing.*;

public class OptionPaneExample {

JFrame f;

OptionPaneExample(){

f=new JFrame();

JOptionPane.showMessageDialog(f,"Hello, Welcome to Javatpoint.");

}

public static void main(String[] args) {

new OptionPaneExample();

}

}

Java JOptionPane Example: showMessageDialog()

import javax.swing.*;

public class OptionPaneExample {

JFrame f;

OptionPaneExample(){

f=new JFrame();

JOptionPane.showMessageDialog(f,"Successfully Updated.","Alert",JOpti

onPane.WARNING_MESSAGE);

}

public static void main(String[] args) {

new OptionPaneExample();

}

}

Java JOptionPane Example: showInputDialog()

import javax.swing.*;

public class OptionPaneExample {

JFrame f;

OptionPaneExample(){

f=new JFrame();

String name=JOptionPane.showInputDialog(f,"Enter Name");

}

public static void main(String[] args) {

new OptionPaneExample();

}

}

Java JOptionPane Example: showConfirmDialog()

import javax.swing.*;

import java.awt.event.*;

public class OptionPaneExample extends WindowAdapter{

JFrame f;

OptionPaneExample(){

f=new JFrame();

f.addWindowListener(this);

f.setSize(300, 300);

f.setLayout(null);

f.setDefaultCloseOperation(JFrame.DO_NOTHING_ON_CLOSE);

f.setVisible(true);

}

public void windowClosing(WindowEvent e) {

int a=JOptionPane.showConfirmDialog(f,"Are you sure?");

if(a==JOptionPane.YES_OPTION){

f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

}

}

public static void main(String[] args) {

new OptionPaneExample();

}

}

Java JTabbedPane

The JTabbedPane class is used to switch between a group of components by

clicking on a tab with a given title or icon. It inherits JComponent class.

JTabbedPane class declaration

public class JTabbedPane extends JComponent

Commonly used Constructors:

Constructor Description

JTabbedPane() Creates an empty TabbedPane with a default tab

placement of JTabbedPane.Top.

JTabbedPane(int tabPlacement) Creates an empty TabbedPane with a specified

tab placement.

JTabbedPane(int tabPlacement,

int tabLayoutPolicy)

Creates an empty TabbedPane with a specified

tab placement and tab layout policy.

Java JTabbedPane Example

import javax.swing.*;

public class TabbedPaneExample {

JFrame f;

TabbedPaneExample(){

f=new JFrame();

JTextArea ta=new JTextArea(200,200);

JPanel p1=new JPanel();

p1.add(ta);

JPanel p2=new JPanel();

JPanel p3=new JPanel();

JTabbedPane tp=new JTabbedPane();

tp.setBounds(50,50,200,200);

tp.add("main",p1);

tp.add("visit",p2);

tp.add("help",p3);

f.add(tp);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String[] args) {

new TabbedPaneExample();

}}

Output:

Java JLayeredPane

The JLayeredPane class is used to add depth to swing container. It is used to

provide a third dimension for positioning component and divide the depth-range

into several different layers.

JLayeredPane class declaration

public class JLayeredPane extends JComponent

Commonly used Constructors:

Constructor Description

JLayeredPane It is used to create a new JLayeredPane

Commonly used Methods:

Method Description

int getIndexOf(Component

c)

It is used to return the index of the specified

Component.

int getLayer(Component c) It is used to return the layer attribute for the

specified Component.

int getPosition(Component

c)

It is used to return the relative position of the

component within its layer.

Java JLayeredPane Example

import javax.swing.*;

import java.awt.*;

public class LayeredPaneExample extends JFrame {

public LayeredPaneExample() {

super("LayeredPane Example");

setSize(200, 200);

JLayeredPane pane = getLayeredPane();

//creating buttons

JButton top = new JButton();

top.setBackground(Color.white);

top.setBounds(20, 20, 50, 50);

JButton middle = new JButton();

middle.setBackground(Color.red);

middle.setBounds(40, 40, 50, 50);

JButton bottom = new JButton();

bottom.setBackground(Color.cyan);

bottom.setBounds(60, 60, 50, 50);

//adding buttons on pane

pane.add(bottom, new Integer(1));

pane.add(middle, new Integer(2));

pane.add(top, new Integer(3));

}

public static void main(String[] args) {

LayeredPaneExample panel = new LayeredPaneExample();

panel.setVisible(true);

}

}

Output:

Java JPanel

The JPanel is a simplest container class. It provides space in which an

application can attach any other component. It inherits the JComponents class.

It doesn't have title bar.

JPanel class declaration

public class JPanel extends JComponent

Commonly used Constructors:

Constructor Description

JPanel() It is used to create a new JPanel with a double buffer

and a flow layout.

JPanel(boolean

isDoubleBuffered)

It is used to create a new JPanel with FlowLayout and

the specified buffering strategy.

JPanel(LayoutManager

layout)

It is used to create a new JPanel with the specified

layout manager.

Java JPanel Example

import java.awt.*;

import javax.swing.*;

public class PanelExample {

PanelExample()

{

JFrame f= new JFrame("Panel Example");

JPanel panel=new JPanel();

panel.setBounds(40,80,200,200);

panel.setBackground(Color.gray);

JButton b1=new JButton("Button 1");

b1.setBounds(50,100,80,30);

b1.setBackground(Color.yellow);

JButton b2=new JButton("Button 2");

b2.setBounds(100,100,80,30);

b2.setBackground(Color.green);

panel.add(b1); panel.add(b2);

f.add(panel);

f.setSize(400,400);

f.setLayout(null);

f.setVisible(true);

}

public static void main(String args[])

{

new PanelExample();

} } Output:

